The Cook-Levin Theorem is False

André Luiz Barbosa
http://www.andrebarbosa.eti.br
Non-commercial projects: SimuPLC — PLC SimulatoL&E — Electric Commands Language

Abstract. This paper demonstrates that the Cook-Levin Téraois false, so the NP-
Completeness, since a faulty hidden assumpti@cidyt used in its proofs. | am so sorry.

Mathematics Subject Classification (2010). Prim@8@15; Secondary 68Q17.

Keywords. Computational Complexity, Cook-Levin ®hem, Cook-Levin-Barbosa
Theorem, NP/NRCompleteness, Observer-Dependency Complexity (ODC)

Contents
1 Introduction 01

2 The falseness of the Cook-Levin Theorem 01
2.1 Example of an NP problem not reducible to SATieans of the CLT 04
2.2 How can a Theorem be false? 05

3 Fixing the Cook-Levin Theorem: The Cook-Levin-Babosa Theorem 06
4 Conclusion 06

5 The Reviews Battles 06

6 Pride & Prejudice 09

7 What would the proper Stephen Cook say? 09

8 Freedom & Mathematics 10

9 References 10

=

Introduction

The Cook-Levin Theorem (Cook’s Theorefff)is the most central theorem in the
Computational Complexity Theory, stating the exaeplly important concept of the NP-
Completeness, but very very unfortunately it isdéalsince a faulty hidden assumption is
tacitly used in its proofs. The researchers frois #rea never thought about that hidden
assumption and it was so lamentably always negldotethe last four decades. Why?

In this little paper, | present a theory in ordereixplain what occurred and why this
mistake has such a so long term. About this matéer the comments in [8] and [13].

2. The falseness of the Cook-Levin Theorem

Looking in [1] more general definitions for decisi problems and polynomial-time

DTM (Deterministic Turing Machine), and seeing deephe concerned old traditional
definitions, an extremely surprising fact — thatllwhemuse the Theoretical Science
community — is discovered: The central “theoremdnir the Computational Complexity
Theory crumbles to the ground, so the NP-Completeeven though we refuse to see...):

Theorem 2.1.The Cook-Levin Theorem (CLT: SAT is NP-Compleiefalse (SAT is
NOT NP-CompleteSAT € P does NOT imply P = NP).

Proof. The Cook-Levin Theorem is false, since in orderatl its proofs work a
fundamental — but in general neglected — inpub(imftion) is absolutely essential and tacitly
supposed to be known and given to us (or can bgutad in deterministic poly-time) in their
scopé?: the polynomial running timp(n) of some NTM (Nondeterministic Turing Machine)
that decides an NP problem £ |input for it]). With such p(n) anyway provided (which can
be considered a hidden assumption or axiom), atpoly DTM that reduces any instance of
this problem to an instance of poly-size Booleamiga (or of poly-size Boolean circuit that
simulates the problem) can always be constructaashyithin deterministic poly-time (where
the size of this generated Boolean formula (omityds in O(log(n)p(n))).

However, if such g@(n) is unknown (or is not given to us) neither carcomputed in
deterministic polynomial time, then all these psahall fail. They stop utterly working,
consequently, when suchpéin) is unknown (or not given to us) priori, since it cannot be
computed in deterministic polynomial time, as pavwethe Proposition below:

Proposition 2.1 Computing in deterministic polynomial time a paudynial n® (where
n = l|input|) that upper bounds the running time of abitrary polynomial-time DTM
(therefore, NTM)M is impossible. (Hence, computing in deterministddypomial time that
p(n)— information that is essential in order to CLTri®— is impossible too).

Proof. Assume that there is a polynomial-time DTBI that returnsk on the
description of any arbitrary DTM\ promised to be polynomial-time, where the polyrami

n® must upper bound the running time é Then, letA be the polynomial-time DTM
(computer program with unbounded memory) below:

01. A(input) {

02. n :=length(input);

03. k:=B(A)); // the DTMB runs on the proper description (or codeAatnd returng
04. execute n™(k+1) arbitrary stegéthis diagonalization makes the DTB/always wrong
05. if (k < 8) return(0); else return(1);

06.} // note that we can use the proper descriptioh lbére by thdRecursion Theorem

Thus, as it is easily seen above, the diagonadizati the lines 03 and 04 makes that
the running time of the DTMA is at least®(n“"Y), whereas the DTMB answers that this
running time is onlyo(n). Hence, cannot exist at all a polynomial-time DMt on the
description of an arbitrary polynomial-time DTM cputes a finite&k wheren® upper bounds
its polynomial running time: The CLT is false. $lle NP-Completeness is really incomplete,
a sweet but evanescent delusiah.

Obs: | know that the proof of the CLT does not rely the negating the Proposition
2.1 (neither on the correctness nor incorrectnésenalgorithm above), but if it was false,
then the arguments in this paper would not wordrgter to refuse the CLT.

In short: The CLT is really a kind afonstructive proof® and algorithmic process
that allows actually constructing a real and leggtie polynomial-time computable function

2

CLT" Z* x X* x ¥* — ¥* where if CLT'(M), X, p) = b, thenp is a polynomial in |x| (that

p(n) with n = |x|), and is a poly-size Q(log(n) p(n¥)) Boolean formula that represents the
entire computation o on inputx, whereb is satisfiable if and only if the polynomial-time
NTN M (that decides an NP language accepts within p(|x|) computational steps (that is,

b € SAT < x € L, which implies that if SAT should be in P, thesr RP).

However, note that in order to really constrbcfas described abovéM), x andp
MUST be given. If thap(n) of M is not given, then effectively constructing thaddBean
formula b by means of the CLT process above is impossibtainvipolynomial time, of
course. So, the existence of a polynomial-time Difislt decides the SAT does NOT imply
that it can always be constructed another polynbtime DTM that decides a given NP
language, undoubtedly, taking into account the][oupossibility of the concrete poly-time
construction of the Boolean formuteabove whem(n)is unknown or not given to us.

See that the input argumerid) andx for CLT’ can always be given, of course, but if
p cannot be it, then we can use in its place int&i thnction any arbitrary polynomiay,
obviously. But this does not work, in general, sirtbat involved algorithmic process upon
CLT will computeq(|x|) in order to know what the size of the tabléamust construct in
order to build that Boolean formula @ Since this formula is satisfiable if and onlyNF
acceptsx within q(|x|) computational steps, d(|x|) < p(|x]), then this formula will not
represent the entire computationhdfon inputx whenM uses more thaq(|x|) steps in order
to accepix, clearly (becaus® cannot use more thaf|x|) steps [for T(|x]) =p(|x]) =p(n),
wheren = |x|], but, in this caseyl can use more thag(|x|) ones: hence, in this instanda,
acceptsx, butb will not be satisfiable, which destroys the cotness of this reduction in
general, as that(n) is unknown or not given to us).

Consequently, the CLT states if SAT is in P, ther AIP problems (that can always
be decided by some polynomial-time NTM) are in &, tout the big issue, that destroys the
CLT and its beautiful and marvelous conclusionthat that polynomialp(n) (the input
argumenp for CLT’) can be unknown or not given to us (rememthat it is not computable
in deterministic polynomial time, byroposition 2.1) and even then thas an NP language,
of course, which implies that there are NP langsatigat cannot be reduced to SAT in
deterministic polynomial time, which — in theorefi¢cerms — annihilates completely the CLT
and the proper concept of NP-Completeness, simgedte intimately and utterly linked.

In fact, the class NP can be divided into two nesjotht classes: NP(when thatp(n)
is known and given) and NFRwhenp(n) is unknown or not given to us), where NP =,NIP
NP, and NR N NP, = @. Into traditional beliefs, NP is considerate eqaNR,, and NR is
considerate equal @ (the hidden assumption treated here), but thessiderations take not
account that the class NPan be a genuine, useful and very important coxitglelass into
the development of the Computational Complexity drge with great powerful applications
in mathematically proven polynomial-time-unbrealeapublic-key cryptography, for instance
(I am writing a paper about this practical applimatof the NR). By the way, see [18].

Into more formal terms, lets see the definitionstfe two new disjoint classes that
build the traditional classlP: NPy and NP, (Nondeterministic Polynomial Time when the
involved polynomial time is or not given to us,pestively):

Definition 2.1. NP,. Let L be a language ovet. L € NPy if and only if there is a

binary relationR < X* x X* and a known and given finite fixed positive integesuch that
the following two conditions are satisfied (noteatttherep must be fully known for all
involved people, that must be fully conscious af fact):

1. Forallx € X*, X € L < 3y € X* such tha(x, y) e Rand|y| e O(|xP); and

2. The languagel, = {x#y : (X, ¥) € R} over £ U {#} is decidable by a
polynomial-time DTM whose polynomial is known anigien to us[]

Definition 2.2. NPR,. Let L be a language ovex. L € NP, if and only if there is a

binary relationR < X* x ¥* and a known and given finite fixed positive integesuch that
the following two conditions are satisfied (wh@renust obey the same clause as on Def. 2.1):

1. Forallx € X*, X € L < 3y € X* such tha(x, y) e Rand|y| e O(|xP); and

2. The languagel, = {x#y : (X, ¥) € R} over X U {#} is decidable by a
polynomial-time DTM whose polynomial is unknownrast given to usl]

Definition 2.3. NP.NP = NR U NPR,. L1

In the definitions above, a DTM that decidggs called averifier for L and ay such
that (X, y)e R is called aertificate of membershipr withessof x in L.

Observer-Dependency Complexity (ODC):Knowing means here that a person
knows completely that involved polynomial and idlyfuconscious of this fact; hence the
definition of NR, is surelysubjective in the sense that a problem may be in, NP,] for a
person but not for another one. Questions suchsak i NPy [NPy]?” can have different
answers for different people. Although whethersitim NP continues an objective matter.
Notice that herave are theObserveron the ODC concept, being fully conscious of faid.

Thus, as with Quantum Mechanics in respect to Rhydhis revolutionary and
seminal concept (ODC) puts thebserverinto center of TCS stage. The human factor
eventually wins again, even into the abstract gridi Computational Complexity Theory:
Turing Machine and other similar formalisms areyvanportant and powerful intellectual
tools, but we, people that non-mechanically thikkdogito, ergo surti, are more than it!

See that NPlanguages are legitimate NP ones, but they camnoéduced to SAT in
deterministic polynomial time, as proved over, whimplies that the CLT is false, plainly]

2.1 Example of an NP problem not reducible to SABy means of the CLT

Definition 2.4. Polynomial Acceptance M problem (PA-My). The PA-M¢ is defined
over {0, 1} wherew € PA-M; if and only ifw = (1") and the fixed polynomial-time DTN
(whose polynomial is unknown or not given to us)some (at least one) inpwtof lengthn
writes 1 on the cell O of the tape and then halts. The DNMallows as input ang-bit word
and is promised to eventually always wrlleor 1 on the cell 0 and then halt, within
polynomial time: T(n) =O(n%), for some fixed nonnegative finite constant which is
unknown or not given to ugl

Notice that the fixed DTMM; is specifically built and given to this problenmdgit can
be any polynomial-time DTM (or computer programhwitnbounded memory) promised to
have such a behavior above.

See that th&A-M; is in NP (more exactly, in NRvith respect to us), evidently, since
if w € PA-Mjy, then it is verifiable in deterministic polynomiime whether the DTMVI¢
writes 1 on the cell 0 and then halts on an [guessed] inmfitengthn: it suffices to simulate
the running of the DTMM¢ on that input and then to check the contentsatf ¢kll O after the

4

simulation has finished. Note that simulating thening of any polynomial-time DTM on an
arbitrary input can be done within polynomial tin@o (since a polynomial is a time-
constructible functioft¥).

But the PA-Ms is not reducible to SAT by means of the CLT, negiicly, because the
polynomial time running of the DTN; is unknown or not given to us, hence a poly-sized
Boolean formula (or circuit) that represents thmestance of th&A-M; to be decided cannot
be really [concrete and effectively] built by usdaterministic polynomial time: So, the CLT
is here concretely proven false.

2.2 How can a Theorem be false?
Since aheoremis an absolute mathematical truth, how can the B¢ Talse?

— | am so sorry, but the answer is unavoidables Ttheorem”, in fact, is not a
genuine theorem, for its proofs are ill, since ititem it is tacitly used the hidden non-proved
(faulty, essentially) assumption (or hidden axiongntradictory with ZFC“) — by
Proposition 2.1 —, that states that a polynormfal) that upper bounds the running time of
some NTM that decides in nondeterministic polyndrtirae the problem to be reduced into
that reduction to the SAT can be always anyway igexV/ (either thap(n)is known and given
a priori or can be computed by a polynomial-time DTM). Wavén seen above (Proposition
2.1) that this is not always accurate, obviously.

Another likely source to the faulty “proofs” cowet be a hidden assumption into the
definition of polynomial-time NTM, veiling defininghat relatedp(n) as alwaysa priori
known and given to us. However, in this definitibere is not such assumptiéh.

This hidden assumption was a big flaw into all #tr@wn “proofs” of the CLT,
unknown for four decades, which demonstrates howimtiie Theoretical Computer Science
is an extraordinary marvelous land, and, at same, ta very dangerous math territory.

In order to illustrate the danger, suppose that & hvritten a polynomial-time
computer program (polynomial-time DTM) that corfgaecides the SAT. Then, B gives to
A a problemY that is proven to be decidable withif nondeterministic steps (hencéis an
NP problem), and then solicits to A another polyraftime computer program that correctly
decides the problent (the CLT assures absolutely that, given a polyabitnine DTM that
decides the SAT, this required program can be ebelgrwritten).

Then A, on the other hand, asks B what is the vafue B answers to A that it is
unknown: The proof that is in NP does not determitkeat all, even though it states thais
somefixed finite nonnegative constant. Thus, A respomol B that the demanded task is
impossible without knowindc. Whence, as to know priori or computek in deterministic
polynomial time is in general unfeasible (by Prapjos 2.1, for instance), B (the entire
World, really) concludes that the CLT is false tls®@ NP-Completeness, miserably.

Why did the proofs of the Cook-Levin Theorem begidared true?

— Because that polynomialn) was supposed to t@epriori afully known and given
part ofall NP problems, which this paper has proved to bgemeral a false statement, with
the PA-M¢ in Section 2.1.

But, why was that polynomiaupposed priori to be always a fully known and given
information?

— Because all the actual decision problems thativated the initial studies on
Computational Complexity Theory are decidable bly{timme DTM or NTM whose involved
polynomialsarea priori always fully known and given to us, e.g., SAT, @ra&onnectivity,
Primality Testing, Matrix Determinant, LP, Hamilt@ycle, Steiner Tree, Graph 3-Coloring,
Max-Clique. So, all they are very different from Rp-M; problem, as we have seen here.

3. Fixing the Cook-Levin Theorem: The Cook-Levin-Birbosa Theorem

Theorem 3.1. NPg-Completeness. The Cook-Levin-Barbosa Theorem (CLBT
SAT e P iff P = NR (SAT is NR-Complete).

Proof. Any traditional standard proof of the old Cookvire Theorem goes here, since
into class NRthat polynomialp(n) IS known and given to us, by Def. 2[1.

Hence, although SAT is not NP-Complete, it is ict fdP,-Complete, by th€LBT!

4. Conclusion

The conclusion is that several theorems into TB&ukl be reviewed, searching by
possible faulty hidden assumptions tacitly usea ititeir proofs, which can preclude the
correctness or the soundness of the involved mattieahtruths.

The Savitch's Theorer?! for instance, another central theorem in the Cdatjmnal
Complexity Theory, is also false, since it tacitiges similar faulty hidden assumption too:
that a polynomiak(n) that upper bounds the running space of some NTaM dlecides in
nondeterministic polynomial space the problem camlivays anyway provided for us (either
that s(n) is known and givera priori or can be computed by a polynomial-space DTM),
which is also false, by analogous method used I8=e.that these hidden assumptions hurt
even all the Polynomial Hierarch§?! and other similar constructions — though all afst
ones can be generalized and fixed by the Barb&agram, as described in [1].

So, it is here finished this extraordinary elevayg paper that will change the four-
decade TCS and alter almost everything fundaméentalch an area!

5. The Reviews Battles
Suppose a reviewer says that:

“— | do not understand the theoretical model wreproblemQ is solved by ari(n)-
bounded NTM buf(n) is not known.”

That one has unfortunately misunderstood the itietsuphold the paper, noticeably:
In ourf(n)-bounded NTM, we know that thig) is alwayssomepolynomialp(n), and we are
fully conscious of this fact, although perhaps wendt know whaexactlythatp(n) is.

Suppose another reviewer says that:

“— The CLT states that for each NP mach@é¢here is a polynomial-time DTN¢
that reduces the language acceptedChiyp SAT and depends dd, where the polynomial

6

bound ofC is [anyway, maybe miraculously] hardwired in thefidition of Mc, and the
translation fronC to Mc is NOT required to be effectivenly that arMc exists for eaclt is
required. By this, in order to the reduction work#, that would be required there exists a
polynomialp(n) that bounds the running time Gf Hence, the claims of the author are clearly
incorrect, since in order to prove the CLT, we @b meed to specify an exact valuepgn),

but we need only to know that sucp(@) exists, as in the definition below:

Definition 5.1. NP-CompletenessLet L be a language over a finite alphabet is
NP-Completeif and only if the following two conditions aretisdied:

1. L e NP; and

2. Any languageC in NP is deterministic-polynomial-time-reducible to(written as
C<plL), whereC <, L if and only if the following two conditions aretsdied:
2.1 There existb: Z* — X* such that for allvin £*, w € C < f(w) € L; and

2.2 There exists a polynomial-time DTM that halts withf(w) on its tape on
any inputw [although thisM maybecannot be really built. [1”

So, he/she continues, | would be wrong and | shoedd the basic definitions and the
rudiments of theory of NP-Completeness, in orddrsiee my huge error.

| have followed that reviewer advice, but the bteire about the matter (like in [9])
and standard texts on Theory of Computation (likE2{) affirm contrarily that the CLT states
that: A problemZ in NP is also in NP-Complete (NPC) if and onhNENERY other problem
in NP_can bdransformed into Z in polynomial time. In [11] it is even written, about NP-
Completeness: “It is not known whether any problemNPC is tractable [decidable in
polynomial time], but an important property of tltigss is that every problem in the class is
tractable if and only if one such problem is tratgd’ More clear impossible.

Hence, the definition of NP-Completeness aboveyirrgl only on the existence
criterion of the DTMM (without its actual construction), is entirely kguand useless, since
by it the existence of a deterministic polynomialé algorithm that decides an NP-Complete
problem does not imply that every NP problem can deeided in polynomial time,
despondently, that is, SAT in P would not leadeteen the traditional question] NP = P.

So, for our happiness’ sake, see a correct definiti

Definition 5.2. NP-CompletenessLet L be a language over a finite alphabet is
NP-Completeif and only if the following two conditions aretisdied:

1. L e NP; and

2. Any languageC [over a finite alphabel’ (maybe different fromx)] in NP is
deterministic-polynomial-time-reducible to(written asC <, L), whereC <, L if
and only if the following two conditions are saigsf:

2.1 There existb: ¥'* — X* such that for allivin £*, w e C < f(w) € L; and

2.2 There exists a polynomial-time DTM that halts withf(w) on its tape on
any inputw, and thisM canalways be really built [

“— Proving a problem in NP to be NP-complete telsthat it is as hard to solve as

7

any other NP problem. Said another way, if ther@nig NP-complete problem that admits an
efficient solution, then every NP problem does ge.in [12]. By the way we have seen
above, more clearly impossible, yet.

Thus, in order to the CLT works, we need more tlwty to know that that
polynomialp(n) exists: We need definitely to know exactly whas tholynomial is (80007, a
googol?, 3n?, Bnr 7n?, ...?, 1111°+ 13+ 1782, ...?), naturally.

Hence, by the CLT, if any problem in NPC is in Rent all the problems in NP are
[concrete and effectively, obviously] in P too, aase the definition of NP-Completeness into
CLT. Then, as demonstrated in Section 2 (thereaataal NP languages that cannot be
reduced to SAT in deterministic polynomial timeelithe PA-M; problem, by Def. 2.4), by
its proper pretensions, the CLT is not true atadlgourse.

Finally, yet another reviewer has said that:

“— | can do no more than to emphasize that regssdbé any ambiguous phrasing the
author may find in Wikipedia or textboakccounts that he believes supports his mistaken
view, published papers and reputable researchdteifield rely on the correatefinition: A
problemC is NP-Complete if it is in NP and every probl&nm NP reduces t&.” Period.

Sadly, that reviewer has forgot the main point loé treally correctdefinition: A
problem C is NP-Complete if it is in NP and every problémin NP reduces tcC in
polynomial time. Otherwise, the NP-Completeness would be useless ¢¥ the most
reputable researcher in the field from the worldcs without this time-restriction any NP
problem C (except the trivial ones¥* and @) would be NP-Complete too: it would be
sufficient to reduce any problefin NP toC in exponential time, which is always possible
by means of &rute-forcemachine, of course.

In [15] it is even defined: Definition 15.3. We say that a recognition problem A
polynomially transformdo another recognition problem, 4, given any stringx, we can
construct a stringy within polynomial (in %|) time such thax is ayesinstance of Aif and
only if y is ayesinstance of A” and “Definition 15.4. A recognition problem A NP is said
to beNP-completéf all other problems itNP polynomially transform to A.”

Notice that excerpt that | have stressewe “can construct”: Papadimitriou and
Steiglitz agree with me that the definition of NBfapleteness cannot rely only on the
existence criterion of the poly-time constructidntimat stringy, but otherwise on its actual
constructionwithin polynomial time, which is not possible fitre PA-M; problem (Def. 2.4),
for instance.

Thus, the huge issue with the CLT, hence, is that teal reduction cannot work
within polynomial time if the running time of sonNIrM that decide®\ is not exactly given,
which implies that the CLT is false, as proven here

In fact, | think the reviewers of this paper showtleast, ask themselves (with respect
to CLT proofing and Defs. 2.1, 2.2, 2.3, 2.4, ;ntl &.2) and then respond on their reviews:

Does there be really a hidden assumption in the @odfs? Why or why not?
Are the CLT proofs, in fachon-constructive oné¥"? Why or why not?
DoesNP = NR,? Why or why not?

DoesNP, = @? Why or why not?

Is thePA-M¢ problem in NP, by Def. 2.4, a®A-M; <, SAT? Why or why not?

agrwpdpE

8

Is the Def. 5.1 better than the Def. 5.2? Why oy wbt?

Is theObserver-Dependency Complexatyelevant concept? Why or why not?

If this paper had been perfectly written, with dgreaglish usage without seeming
arrogant and with moreréspectful (flattering) style, would your answers to
questions above be different? Could a supposedesitAntipathy transform his
correct mathematical ideas into wrong ones? Isféni8 Why or why not?

©oNo

Finally, | beg you to ask yourself and then resppritharily to the key question that
can redefine your entire field of research and Kedge:

— Does the discovery (or invention/creation) ofededministic poly-time SAT-decider
algorithm imply all NP problems can be actually ided in deterministic polynomial time,
even those ones in YP Does your answer here contradict the previoustorguestion 6
above, on the value of the definitions 5.1 and 3\2% or why not? (I beg you to think very
profoundly on this key question — a really metaraathtical and philosophical issue.)

6. Pride & Prejudice
Opinions from a reviewer:

Pride: “— It can be easily seen that the paper is wramgl | will briefly detail why
this is the case: We do not actually get to knowinfe- algorithms for all problems in NP
when someone would give a P-time algorithm for SWE, as theoreticians, are (in this case)
happy enough with existence of algorithrifssomeone were to give a P-time algorithm for
some NP-hard problem then we might not really bechmadloser solve our favorite NP-
complete problems. Indeed, we only know that atbors exist and we also do not know their
runtimes.”

Prejudice: “— The author is free to contest our way of makihgory about efficient
algorithms, in the sense that they do not captiseview of the real world. There is no
problem with that._But | would kindly ask him toopt sending his opinions to theory
conferences or journal§he established theory of NP-completeness, ahelr ototions, are
the language that we speak and love, and it is @asy for students to understand where this
present paper breaks down, and why the Cook-Lelieeilem does after all hold.”

Pride_and Prejudice: “— NP-completeness is not perfect, in that it e
inconceivably hard to capture what practical inséenof problems aréand often their are
much easier than the worst case). However, this do¢ harm the fact that its fundamental
results (like the Cook-Levin-Theorem) are corremten if they do not match the author’s
intuition.”

7. What would the proper Stephen Cook say?

“— It is shown that any recognition problem solveg a polynomial time-bounded
nondeterministic Turing machine can fEducedto the problem of determining whether a
given propositional formula is a tautology. Heeglucedmeans, roughly speaking, that the
first problem _can be solvedeterministically in polynomial time provided amaole is
available for solving the second.” are the firstgses that Stephen Cook wrote on his seminal
1971 papefThe Complexity of Theorem-Proving Proceddt8sintroducing the first proof of
his main theorem.

What would he mean by the stressed stretch “casobhed? | think that he means,
“can be solved”, but the reviewers of this my pagmem do not believe him, so far, guessing
that he would be saying something like “there isrfast be) a poly-time DTM (although
maybe nobody can construct it at all) that soluésSo, | would recommend that these
reviewers turn on to believe more on what the gneasters wrote and said into their great
masterpieces.

Continuing with that Cook’s masterpiece:

“Theorem 1.If a set S of strings is accepted by some nondetstioc Turing
machine within polynomial time, then S is P-redlgctb {DNF tautologies}.

Corollary. Each of the sets in definitions 1)-5) is P-reduital {DNF tautologies}.

This is because each set, or its complement, ispaed in polynomial time by some
nondeterministic Turing machine.

Proof of the theorenSuppose a nondeterministic Turing machhaccepts a s& of
strings within timeQ(n), where Q(n) is a polynomial. Given an inpw for M, we will
constructa proposition formul&(w) in conjunctive normal form such thafw) is satisfiable
iff M acceptsw. ...” 7]

Once again, what would Stephen Cook mean by thessdd stretch “we will

construct? | think that he means, “we will construct”, bsb far the reviewers of this my
paper seem definitely do not believe him.

8. Freedom & Mathematics

“_ The essence of Mathematics is FreeddhfGeorg Cantor}”

9. References

[1] A.L.BarbosaP != NP Proof unpublished, available:
http://arxiv.org/ftp/arxiv/ipapers/0907/0907.3965.pd

[2] M. Sipser,Introduction to the Theory of Computation — SecBddion, Thomson
Course Technology, Boston MA, 2006.

[3] From Wikipedia, the free encyclopedid® Versus NP Probleimunpublished, available:
http://en.wikipedia.org/wiki/P_versus_NP_problem

[4] From Wikipedia, the free encyclopediZermelo-Fraenkel Set Thedrynpublished,
available:http://en.wikipedia.org/wiki/Zermelo-Fraenkel _sétedry

[5] From Computational Complexity, blogibundations of Complexity — Lesson 18:
Savitch's Theoreinposted at May 14, 2003, by L. Fortnow, unpubdidhavailable:
http://blog.computationalcomplexity.org/2003/05/haiations-of-complexity-lesson-
18.html

[6] From The Engines of Our Ingenuity, sit&pisode n1484: GEORG CANTORposted

10

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

by John H. Lienhard, unpublished, availalbitp://www.uh.edu/engines/epil484.htm

M. JohnsonHandout“Lecture 5: The Cook-Levin Theor&ranpublished, available:
http://russell.lums.edu.pk/~archive/Complexity/dumiilecture5handout. pdf

From Godel's Lost Letter and P=NP, a personalwof the theory of computation,

blog, public comments orFacts No One Really Che¢kposted at July 25, 2012, by R.

J. Lipton, unpublished, availablenttp:/rjlipton.wordpress.com/2012/07/25/facts-no-
one-really-checks/#comment-22187

From Wikipedia, the free encyclopediaNP-Completg unpublished, available:
http://en.wikipedia.org/wiki/NP-complete

From Wikipedia, the free encyclopediaPdlynomial Hierarchy, unpublished,
available:http://en.wikipedia.org/wiki/Polynomial_hierarchy

Michael P. Drazin, book review @@omputers and intractability: A guide to the theory
of NP-completeness, by Michael R. Garey and DavidoBnson, W. H. Freeman and
Company, San Francisco, 197Bulletin (New Series) of the American Mathemdtica
Society, Volume 3, Number 2, September 1980, pp.8-B8B, available:
http://www.ams.org/journals/bull/1980-03-02/S02 7B#0-1980-14848-X/S0273-0979-
1980-14848-X.pdf

L. Fortnow and S. HomeA Short History of Computational Complexitynpublished,
available:http://people.cs.uchicago.edu/~fortnow/papers/hygpolf

From Computational Complexity — Computatiot@mplexity and other fun stuff in
math and computer science from Lance Fortnow antl Gasarch, blog, public
comments on Who do you write papers fdi?posted at January 31, 2013, by Lance
Fortnow, unpublished, availablettp://blog.computationalcomplexity.org/2013/01/who
do-you-write-papers-for.html?showComment=135973882%c883623509379550213

From Wikipedia, the free encyclopedi&dnstructible Functioh unpublished,
available:http://en.wikipedia.org/wiki/Constructible function

C. H. Papadimitriou and K. SteiglitZombinatorial Optimization: Algorithms and
Complexity Dover Publications, Inc., Mineola NY, 1998.

From Wikipedia, the free encyclopedia&dnstructive Prodf unpublished, available:
http://en.wikipedia.org/wiki/Constructive proof

Stephen A. Cook, The Complexity of Theorem-Proving Procedlreavailable:
http://www.cs.toronto.edu/~sacook/homepage/1971.pdf

A. L. BarbosaThe Dead Cryptographers Society ProbJempublished, available:
http://arxiv.org/ftp/arxiv/ipapers/1501/1501.038%#.p

André Luiz Barbosa — Goiania - GO, Brazil — e-Mail:webmaster@andrebarbosa.eti.b~ June 2012

Site..
Blog.

....... :www.andrebarbosa.eti.br
....... : blog.andrebarbosa.eti.br

This Paper :http://www.andrebarbosa.eti.br/The_Cook-Levin_Tleaoris_False.htm

PDF.

...... . http://Iwww.andrebarbosa.eti.br/The _Cook-Levin_Teaoris_False.pdf

arXiv...... : http://arxiv.org/ftp/arxiv/papers/0907/0907.3965.pd

11

