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Abstract. The Hilbert's Hotel is a hotel with countablyiimifely many rooms. The size of its
hypothetical computer was the pretext in orderhimk about whether it makes sense and
what would be logNo). Thus, at the road of this journey, this littlaper demonstrates —
surprisingly — that there exist countably infinisets strictly smaller thady (the natural
numbers), with very elementary mathematics, sokshgly stating the inconsistency of the
Zermelo-Fraenkel Set Theory with the Axiom of Gh@d=C).
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1. Introduction

This paper proves, utilizing the suitable axiomsl aules strictly within ZFC, the
inconsistency of the proper ZFE€: '® The proof relies on the construction of a countabl
infinite setstrictly smaller tharN, which would be impossible, by thxiom of Countable
Choice or Axiom of Denumerable ChoicéAC,) !, hence this axiom is unfortunately
contradictory with ZFC, which implies that the Zkdnconsistent, regrettably.

Suppose that the size of a computer is, coarse humtermined by the size (and
quantity) of its internal registers and memory (RARf!, mainly when these are huge
components. Assume yet that a computer, in ordaeko controlling the administration of a
hotel, must be able to cope efficiently online eddt with its number of rooms and guests.
Presume also if this [finite] number 15 then, in order to maximize the speed of the
processing, the size of its internal registers ameimory cells should be at least about
[log,(n) ], where the size of the computer would be proportitmdog,(n) 1. 24

So, with those same [seemingly sensible] assungtishat would be the [theoretical]
size of a computer for the Hilbert's Hotef! in order to help to manage countably infinitely
many rooms and guests {)? What about its size being abdod,(,)? Would that question



make sense in ZFG® What about this problem maybe shed light on thestian concerning
even to consistency of the proper ZHE®!

2. Definition of log'-panfinite sets (log-w), log(Xo) and T,

Definition 2.1: log™*-panfinite set (log'-®) and log(Xo). Let X and Y be infinite
subsets of the natural numb&¥$'®, and the real numbef® %, respectively, by théxiom
Schema of Replaceméhtwith the functions below, and I&t be the power set of, by the
Axiom of Power Sét:

X ={llog,(n)J: ne N'\{1}} (Llog.|: N*{1} — N*, wherelx] = maxfme Z |[m<
x})

Y = {1/(logy(n) + 1) : ne N’} (1/(log, + 1) : N* — R, where log(n) =y 2 =n)
Z = power set ofX

Notice that that seX is very interesting, because even though it ignadlyy countably
infinite, its cardinality or size (X) or [X|, that we shall callog,(&) hereafter) is strictly less
than the cardinality di (where N| =), by the following theorem:

Theorem 2.1. log(Xo) = [X| < Y] = N| = N,.

Proof. There exists an injective functidn Z — Y. We can see it defining below the
setsX,, Y, andZ, and then demonstrating constructively that alwWays< |Y;|, for everyr, and
then ag approaches,, this shall necessarily lead #] ¥ [Y|, which implies that{| < |Y|.

Schema ofDefinition 2.2: Restricted SetsX,, Y, and Z,. Let the set¥;, Y, andZ, be
defined asX, Y andZ above, but with a set {1, 2, 3, ..., r} replaciNg, where re N*, or r =
No (Where, in this latter case: {1, 2, 3, 8¢} ={1, 2,3, .} =N X =Xw=X Yy =Y =Y
andZ, =Zy, = 2):

X, ={llog:(n)]: n€e{2, 3, ... 1}
Y, ={1l/(logx(n) + 1) : n€{1, 2, 3, ..., r}}
Z, = power set ofX;

So, there exists an injective functibn Z, — Y, for everyr. We can demonstrate it
defining that function a§(@) = 0, and for every nonempty subset {k,, k., ..., k,, ...} of Z,,
f,(s) = U(log(l + 2 + 2% + ... + Z» + ) + 1). Note that thas can be either a finite or
infinite subset o¥,.

Then, we can prove that thitis really injective by construction, where for eyve
memberp of Z,, there exists one single memlyeof Y,, that is if f,(p) =y, and f,(q) =y, then
p = g. This happens because we need doulile order to generate only one new value to
|_Iogz(r)J, which in its turn will double the sizes ¥f and ofZ,, equalizing exactly their sizes
(IY:] and Z;|) whenr is a power of 2 (otherwise, iifis not a power of 2, ther¥|| > [ |, but
these sizes are alwaysar. (|Y(| - E/|) < 2), since if k € X, thenY, and Z, contain
necessarily at least2elements (or members), which implies, as alt N*, that Y;|> [Z;| for
all r varying froml1 up to,, as shown in the symbolical constructive complatédite table
below:
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r_| U(og(M+1) [ |Yr| | log()] | [z4 |f:Zr—Yr

1 1 1 7] 1 [f@=1

2 0.5 2 1 2 |[f@=1

3 0,386... 3 1 2 | f{1h=05

4 0.333... 4 2 4 [f@)=1

5 0.301... 5 2 4 | f{1p=05

6 0.279... 6 2 4 | f({2))=0,386...

7 0.262... 7 2 4 | f({1,2})=0333...

8 0.25 8 3 8 |[f@=1

9 0.239... 9 3 8 | f({1)=05

10 0.231... 10 3 8 | f{2)=0,386...

11 0.224... 11 3 8 | f{1,2)=0333...

12 0.218... 12 3 8 | f(3)=0.301...

13 0.212... 13 3 8 | f({1,2)=0.279...

14 0.208... 14 3 8 | f({2,3)=0.262...

15 0.203... 15 3 8 | f({1,2,3)=0.25

16 0.2 16 4 16 | f(@) = 1;f({1}) = 0.5, f({2}) =0.386...; ...;f({1,2,3,4) =0.2
.. | f(® =1;f{1)) =0.5;f({2}) =0.386...; ..;f({1,2,3,4, ..}) =...
> 1k +1) > k 2 1 f(@)=1f{1)=05;f({2) =0.386...; ....f({1,2,3,4, ... KD = U(k + 1)
.. | f(@)=1f({1}) =0.5,f({2}) =0.386...; ... f({1,2,3,4, .} =...
No | 1/(logs(No)+1) | No | log(Ng) | No | f(@) = Lif({1}) =0.5; f({2}) =0.386...; ... f({1, ..., 10g(No)}) = 1/(10gs(No)+1)

Table 2.1Symbolical table with thafinite completeaonstructionof all Y, andZ,, varyingr from 1 up to¥,

Hence, for every finite or infinite subset.{k., ..., k., ...} of Z, there exists a definite
and distinct value 1/(lagl + 2 + 2% + ... + Z» + ...) + 1) of Y: So, there is an injective
function f: Z — Y, and thenY| = N| > [Z|, thus we can define lg@o) = X| < [N| = N,
becauseX| is strictly less tharz|, since alway$w| < |P(w)| (every set is strictly smaller than
its power set) for every [finite or infinite] set by the Cantor's Theoréf. O

Verify that theCantor's diagonal argumeff! is not valid here in order to attempt to
prove that 4| > N|, since log(Xo) < Ny, S0 a supposed anti-diagonal sequence from a
countably infinite (supposed exhaustivéj-enumeration cannot generate another indicator
function (or characteristic function) different fnoall the other ones of this,-enumeration,
since the enumeration ¥,-length, but that supposed anti-diagonal is ongg(kd,)-length, as
shown constructively in the symbolical table belomhere all the supposed anti-diagonal
sequences can be in that-enumeratiorwithout being different from any position of their
diagonal sequences (otherwise, then it would Iead tontradiction to the exhaustiveness
assumption, and then it would prove that ¥ N|, after all, as in thaCantor's argument
[invalid here]):

Enumeration/Indicator Function 1 2 3 n 1002(N0)
1 0 1 1 0 1
2 1 1 1 1 0
3 1 1 0 1 0
n 1 1 1 0 1
l0gx(No) 0 1 0 1 1
|092(N0)+1 1 0 0 0 0
|092(N0)+2 1 1 1 1 1
10g2(N0)+3 0 0 1 0 0
1002(N0)+i (Supposed anti-diagonal above 1 0 1 1 0
2log(¥o) 1 0 0 1 0
2log(No)+1 0 0 1 0 1
2log(No)+2 1 1 0 1 0
2l0g(N0)+3 1 1 1 0 1
2log(N o)+ 0 1 1 1 1
310g(No) 1 0 0 0 1
No 0 1 0 .. 1 0

Table 2.2Symbolical table with theonstructive demonstratiahat Cantor's diagonal argument is not valid here
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In order to better understanding of the infinitestouction above, l&lV be a set very
similar toX, but a finite set instead of an infinite one, ftstance\W = {Llogz(n)J 'ne{2, 3,
4,5, 6, 7, 8}} What would bew| here?W| = |{1, 2, 3}| = 3.

Notice that V] = 3 =Llog,(8)J), and for every finite or infinite set{2, 3, ..., m}
replacing the(2, 3, 4, 5, 6, 7, 8above, we would hav&\] =|log,(m)], that is this simple
mathematical process allows sensibly to defiteger logarithm of either finite or_infinite
sets Hence, for thain = &, we can see clearly that 9% ,) = W)|.

So, we shall call that sé a log™*-panfinite set(log’-»), whereits size X| is the
symbollog,(A%), as defined above, hendd £ log(No) < No, and | = [P(X)| = 2°%™0 = N,

Therefore, four questions loom about that§etvhich are readily answered here:
1. “— IsX really a well-defined set within ZFC?”

—Yes, X is very well-defined, since its definition resuitsm ZFC, plainly.

2. “— Aprioristically, X could even be a finite set; soXsactually infinite?”

— Yes, it is infinite, since for every numbéog,(r)], there is another one greater than
it Llogx(r+r)] = Llogx(r)] + 1 (see by the way that we “needore in the “input” in order to
get only 1 more in the “output”, which even asdwstexplain why that seX “raises” so

sluggishly).

3. “= Then, isn'tX in fact a traditional countably infinite set, Bs with cardinality
equal toXN, (that is isn't simplyX| = Ng)?”

— No, X cannot beN-sized, since its cardinality, 16@8,), must be strictly less than
No, as proven within the completed infinite constimctshown in the Tab. 2.1 above, unless
we conclude otherwise tha||= [P(X)| = 2* = N,, which would be even very very worse to
ZFC. (See within that construction above thatore “steps” (numbers) are necessary in order
to insert only 1 more member ¥, which even helps to clarify wh} “grows” so slowly
(logarithmically) on the numbar of “steps” or table rows in that construction, drehce it
cannot “reach’N,; that however can be “attained” hereYyygrowing linearly orr.)

4. “—In truth, isn't2" : N — N an injective [total] function?”

— No, 2", neither every increasing exponential functiomincannot even be just a
[total] function fromN to N, since 2° > X,. On the other hand, every polynomialnrs so,
becausek.No < No ¥, for every positive finite numbeis k. (But 2" : log*w — N is an
injective [total] function, atog - is defined herein.)

Definition 2.3: I".; (First Barbosa panfinite number). I'_; is simply another symbol (or
name, or label) to represent J§,), which leads td™; = log(N), and 2+ = N,.

Remember thal; is strictly smaller thans, (I'1 < Ny), since|w| < |P(w)|, by the
Cantor's Theoreft?, althoughl'; is greater than every positive finite integer

Definition 2.4: Generalization of Def. 2.1: log-panfinite sets (log-e) and Io%z(l“_i).
We can now easily generalize the definitions in freds. 2.1 and 2.2, consideritag - =
N, T'o = Ko, and replacing ., byI"; over there (whereé¢ N¥). In more formal terms:
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W = {Llogx,(n)J : n € log-+1-w\{1}}
The crucial question here is again “— What is themality ofW ?”

With similar symbolical completed infinite consttiom used in the constructive proof
of the Theorem 2.1 above, we shall a4lla log'-panfinite se(log’-w) andthe cardinality of
W the symbolog,(Z7.1), where W| = log(I'.1) < T.ivt, and P(W)| = 2°%0 ) =,

Definition 2.5 — Generalization of Def. 2.31"; (Barbosa panfinite numbers). I'; is
simply a defined symbol (or name, or label) in orderepresent logl ...;), which leads td
= log([ 1), 2 =y, andl,; < Ty (for all i € N), wherel, = X, leading tol-; = log(o),
I'; = log(I"_;), and so on. (See that all thdseare positive transfinite numbers, that is they
are strictly greater than every positive finitesgern).

Consequently, initiating with 6§, log(No) andI.;, we can apply recursively the
definitions 2.4 and 2.5 in order to define lguanfinite sets (loGw), log(I'+1) and all the
otherBarbosa panfinite numbers_{ for every positive finite integer> 1.

Note that that concept darbosa panfinite humbemsncompasses tHgeth numbers
(infinite cardinal numbers represented by the syinhowhere,.; = 2, for allj e N) ],
sincei can be non-positive in the Def. 2.5 above, whgre I}, for all the integerg > 0,
entailing that the Beth numbers are jupr@per subset of the Barbosa panfinite numbers.

Notice also that the countably infinite recursive@qess above generates countably
infinite cardinalitied";, where all ones are strictly greater than evesitp@ finite numben.
See yet thal', = X, = 2y, hence there is herein a kind pdsitive-negative natural symmetry
generalizing from Beth numbers to Barbosa panfimitabers.

3. What is the size of the Hilbert Hotel's Compute?

With the definitions above, we can already easilgveer that question “— What is the
size of the Hilbert Hotel's computer?” — It is elqieal"-;. See the construction of this answer
in the symbolical infinite table below (note that @sized binary register or RAM cell can
store one and only one number from exactlgigtinct ones: 0...2- 1)1

#Rooms Range of Numbering Size of Registers/RAM Cells Size of Computer
2 0...1 1 proportional to(«) 1
4 0...3 2 x 2
2" 0..2'-1 n xn
No=21]0...27%-1 log(No) =T1 r,

Table 3.1 Symbolical table representing the theoreticz sif a computer in function of its numbers ranging

In fact, we now can answer innumerable theoretjoaktions of same kind, such as:

1. “— What is the [theoretical] length of a sequentesymbols that represents the
cardinality ofN (No) in a baseb [into a numeral systen strictly greater than
17"



— It is equal to logNo) = I's. (Notice that if that bask was equal to 1 (unary
base), then that length would be equaktpinstead of";.)

2. “— How many months should we [theoretically] investr savings at [positive]
fixed rate of interest” in order to get ai,-moneyed account?”

— We should do it by.; months.

3. “— How many times should you [theoretically] bend iafinitely malleable paper
sheet, in order to get af-lengthy thread?”

— You should do if".; times.

4. “— What is the [theoretical] depth (length) oparfect binary treé” that hasN,
leaves?”

—Itis equal td ...

5. “— What is the [theoretical] maximal size of an NE#at can be converted into an
exponentially larger DFAZ®!

—ltis equal td ;.

6. “— What is the [theoretical] size of RAM memory pters™¥ into a computer with
I' ;-sized RAM (that is, its primary address space iramom O tol";)?”

—Itis equal td ", = log(I").

7. “— How many terms are there in the infinite sumtikaused as a representation of
some Zeno's Paradoxes: 1/2 + 1/4 + ... ¥ #/2. = 17”17

— If we consider sensibly that all those termsrat®nal numbers, therl' & upper
bounded bys,, hence there afie; terms in that sum.

8. “— Can theMathematical Inductiorbe used in order to establish a given statement
for all ¥,natural numbers?*®!

— No, in general, it cannot; it can do it only fbe firstI"; natural numbers, where
that statement is proven for all ones only wher0, since only thai, = NX,. The
maximum increasing rate (polynomial, exponenti#t,)eof the integer formulas
that occur within each particular induction shadtetmine thatparticularj. For
instance, the inductive proof that 2 n® (for n> 10) is valid only for the firsf,
natural numbers, not for alt, ones, as 2is not integer fon beyondr".;, because
naturally 2% > X, and 2+ = N,.

So, like G. Cantolie le vois, mais je ne le crois p&€l: — There exist many countably
infinite sets strictly smaller thai.

Thus, as a preliminary result, the cardinalitieshiis paper can be strictly ordered by
finite and infinite magnitudes, as simply outlineelow:

O, 1, .., N, ---r—i—lu F_i, ...,F_l, Foz N():Do, F]_, Fg, ...,Fp_l, Fp,
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I know that this paper proves a result that apgrés anonsensannouncement (the
existence of infinite countable sets strictly smalthan N), but it is really a great
breakthrough in Set Theory, showing one more tihed aidvances in Mathematics can be
originated by ideas and demonstrations that chgéldhe common sense and the tradition,
attaining a higher level of understanding and gdekayer of comprehension.

4. Changes in the Implications of Peano Axioms fahe Natural Numbers

With the demonstration in this paper of the existenf those setkg'-m (infinite
countable sets strictly smaller thij, we must change the implications of the Pean@#usi
for the natural numbers, replacing in this fielbdsshtements like “every natural number” with
“every natural number irspme selbg’-®]”, where this setog’-® can be the propéog®-m =
N*, naturally, where inand only in this case that statement can continue as “evatyral
number”.

5. Related Work

The main result of this paper unfortunately assbds theAxiom of Countable Choice

or Axiom of Denumerable Choid&C,) '® (that states thak, is smaller than every other
transfinite cardinal number) is inconsistent witR(Z (so, theaxiom of choicea stronger
version of that onéd§!, which implies that the ZFC is inconsistent, lataéfy.

Therefore, | think we need build a new foundatioflname to support and unify the
Axiomatic Mathematics, either fixing or replacirtgetZFC.

6. Freedom & Mathematics

“_ The essence of Mathematics is FreeddhfGeorg Cantory*
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