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then to demonstrate that it is in RP but not in P (where the classes P and RP are generalized 
and called too simply P and RP in this paper, and then it is explained why the traditional 
classes P and RP should be fixed and replaced by these generalized ones into Theory of 
Computer Science). The demonstration consists of: 
  

1. Definition of Restricted Type X Program 
2. Definition of the Majority2/3 Extended General Satisfiability – Maj2/3-XG-SAT  
3. Generalization to classes P and RP 
4. Demonstration that the Maj2/3-XG-SAT is in RP 
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1.  Introduction 
  

We, following The Barbosa’s Program and the ideas proposed in [13], could 
generalize the concepts concerning the class RP (Randomized Polynomial Time) in order to 
settle the P versus RP question, which is done here. (About this Program, see yet [18, 20].) 

 
Accordingly, in Sections 2 and 3 the restricted type X programs and the Maj2/3-XG-

SAT problem are formally defined, and some notes are included to avoid the traps in these 
definitions. In order to define the Maj2/3-XG-SAT, the poly-time computation is redefined in 
more general form. So, it is proved that the Maj2/3-XG-SAT is in RP. Then, in Section 4 it is 
proved that this problem is not in P (therefore, P ≠ RP, naturally, leading to P ≠ BPP, P ≠ 
ZPP, and other great related results), by demonstrating that it is impossible that any poly-time 
deterministic computation solves the Maj2/3-XG-SAT. 
 

In this proof, nothing is assumed about type, structure, form, code, nature, shape or 
kind of computation, neither structure (or lack thereof) of data, eventually used into any DTM 
that tries to decide the problem in polynomial time. Otherwise, my proof exploits properties 
of computation that are specific to real world computers (without oracles, infinite TMs and 
other supernatural devices). In Sections 5, 6 and 7, it is demonstrated that the theoretical 
barriers against possible attempts to solve the P vs. RP question (since P ≠ RP leads to P ≠ 
NP, for P ⊆ RP and RP ⊆ NP) are not applicable to refute my proof. Finally, in Sections 7 and 
8 there are some comments about related work (or lack thereof) to really solve this question, 
and references, respectively.  

 
Shortly, in order for this P ≠ RP proof of mine be accepted, it is sufficient that the fact 

if there is an Lz-language (promise problem) separating complexity classes, then they are truly 
distinct, and the Def. 3.7 are both accepted. On scientific revolution/paradigm shifts, see [18]. 
 
 
2.  Definition of Restricted Type X Program 
  

Definition 2.1. Let S be a deterministic computer program, let n be a finite positive 
integer and let time P(n) be a poly(n) upper bounded number of deterministic computational 
steps (where time P(n) is not previously fixed for all possible programs S, but it is fixed for 
every one). S is a restricted type X program if and only if the following three conditions are 
satisfied: 

  
1. S allows as input any n-bit word (member of arbitrary length n from {0, 1}+). 
 
2. The S behavior must be for each input one of the following: 
 

                            i. S returns 0; 
                          ii. S returns 1; or 
                        iii. S does not halt (never returns any value). 

  
3. The total S behavior must be for each n one of the following: 
  

                            i. S returns in time P(n) 0 for all the 2n possible inputs of length n; or 
                          ii. S returns in time P(n) 1 for at least 2n+1/3 possible inputs of length n. 

  
Note 1: The presence of S is not to be decided – see Section 3.3.1. Testing whether a 

computer program is a restricted type X program will not be necessary to the proof. S will be 
given as an absolute assumption: It IS a restricted type X program, and this fact will NOT be 
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under consideration: This is not a contradiction, definitely, since we can easily create 
innumerous programs of this type and – without need deciding about their types – produce a 
myriad of instances of the Maj2/3-XG-SAT problem with them – see Sections 4.1 and 4.2, for 
details. 
 

Note 2: There is no need that the polynomial running times involved in a proof must 
be previously fixed in order to be defined: For example, what is the fixed polynomial that 
upper bounds the running time of the reducer concerned in the Cook-Levin Theorem? There 
is no such fixed polynomial, since this running time depends on the NP problem whose 
instance is to be reduced to a Boolean formula, but the running time of this reducer is (and 
must be) polynomial, it is not undefined, of course, otherwise there would be no NP-
Completeness. (This insight is formalized in the Def. 3.7.) About this issue, see yet [23] and 
[24]. 
 

Notice that it does not matter at all that we have a different time bound for each NP 
problem, but the same time bound for each instance of a fixed one, since for this reducer any 
instance from every NP problem is like just a mere input to a deterministic computer program: 
what is important here, in fact, is that that polynomial time bound is NOT uniform, whereas it 
is – without any contestation – considered very well defined.  

 
Note 3: The running time of a fixed program (or machine) S on those inputs for which 

it halts is bounded by a polynomial P(n) (which is a time-constructible function (for each 
fixed S), evidently [21]), hence there must be an equivalent machine (to each fixed S) which 
always halts, and still runs in deterministic polynomial time, of course. This, however, is not 
the main point: It is unimportant really whether there must be such an equivalent machine: 
What matters for my proof, after all, is that this equivalent machine (or program) cannot in 
general be constructed within deterministic polynomial time, at all, since that polynomial P(n) 
is a priori unknown or not given and cannot be computed within deterministic polynomial 
time [13]. 

 
Note 4: Into the traditional definitions of the classes P and RP, a polynomial P(n) must 

be fixed for whichever programs S (in order to the Maj2/3-XG-SAT problem (Def. 3.1) is in 
traditional RP), and it is only over the class of all polynomial-time machines that such a 
polynomial is not fixed. However, into the new definitions of the classes P and RP (Defs. 3.5, 
3.6 and 3.7), there is no need that there is a fixed polynomial P(n) for all possible programs S 
in order to the Maj2/3-XG-SAT problem is in the new class RP (Def. 3.5) (see Proposition 
3.1). Thus, the comparison with the Cook-Levin Theorem is here quite well placed (in the 
note 2 above). 
  
  
3. Definition of Majority2/3 Extended General Satisfiab. – Maj2/3-XG-SAT 
  

Definition 3.1. Let S be a restricted type X program and let n be a finite positive 
integer. The problem Majority2/3 Extended General Satisfiability (Maj2/3-XG-SAT) is the 
question “Does S return value 1 for at least 2n+1/3 inputs of length n?” Thus, in the Maj2/3-
XG-SAT question, the input is the pair 〈S,1n〉, clearly, where 1n is just n in unary form. Note 
that the specific and fixed time P(n) related to S is NOT given at all. 
 

Be careful with a possible confusion made about the Maj2/3-XG-SAT and the 
Bounded Halting problem (BH), defined over triples w = 〈M,x,1k〉, where M is a 
nondeterministic machine, x is a binary string, k is an integer, and w ∈ BH if and only if there 
exists a computation of M on input x that halts within k steps [12]: The Maj2/3-XG-SAT is a 
very different problem, since the time P(n) is not given, and the program S into the pair 〈S,1n〉 
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always halts for at least 2n+1/3 inputs of length n, but maybe S does not halt for all the other 
ones. Furthermore, the Maj2/3-XG-SAT cannot be reduced in polynomial time to BH (– See 
the proof of Proposition 4.1). In order to understand why, verify that my Maj2/3-XG-SAT 
problem is in the new [generalized] class RP (Def. 3.5), by Proposition 3.1, but it is not in that 
old traditional one. 
 

See, yet, that the Maj2/3-XG-SAT is also so distinct from the PP-Complete problem 
MajSAT, defined over Boolean formulae. F ∈ MajSAT if and only if more than half of all 
possible assignments make F true [16]: The Maj2/3-XG-SAT, on the other hand, by Def. 2.1, is 
an especially diverse problem, since the number of assignments (inputs) that make S to return 
1 is always either none at all or greater than 2n+1/3; besides the fact that S has a much more 
complex behavior than a simple Boolean formula and can even not halt for some inputs. 
 
 3.1  Definition of well-formed string 
 

Definition 3.2. Let w be a string from {0, 1} +. w is a well-formed string if and only if 
w has the form 1+0s – where 1+ is a finite positive integer n encoded in unary form and s is 
the binary representation of the DTM (deterministic Turing Machine) that simulates a 
restricted type X program S. For n = 13, a well-formed string w would be, for instance, 
111111111111101001000101001110010010101100100101011001001011110010010110...1. 
 
3.2 Definition of the Maj2/3-XG-SAT as well-formed string acceptance 

testing to a language L 
 

Definition 3.3. Let L be a formal language over the alphabet Σ = {0, 1}. A well-
formed string w ∈ L if and only if the DTM encoded into w returns 1 for at least 2n+1/3 
inputs of length n. The Maj2/3-XG-SAT is the well-formed string acceptance testing to L. 
 

Note that as the size of a restricted type X program S is constant on n (|S|(n) = c), the 
length of the DTM that simulates S is constant too on n (|s|(n) = k), and then |w| = n + 1 + k. 
Thus, time P(n) is the same as time P(|w|) and time exp(n) is the same as time exp(|w|). 
  
3.3  Class of the language L and Class of the Lz-language L 
 

L is a nonrecursively enumerable (non-RE or non-Turing-recognizable) language [1], 
since it is undecidable whether or not an eventual result 1 from a computer program occurs 
within polynomial time [19], besides the undecidability even whether just it halts for some 
input [4]. 
 

(Note: The undecidability of the language L does NOT contradict the proof. The 
Maj2/3-XG-SAT is not the undecidable decision problem w ∈? L, but just the decidable one 
well-formed string w ∈? L, as explained in Section 3.3.1, since a well-formed string w is 
given as an absolute assumption: w IS well-formed string, and this fact is NOT under 
consideration. See that exactly the same kind of statement holds to traditional formal 
languages, where the absolute assumption is that the strings to be tested are members from  
Σ*  [1].) 
 

Language Incompleteness – The computer theorists generally make a big mistake on 
definition of computational decision problem: They think that ones is the same thing that 
languages, as if all decision problems could be modeled as string acceptance testing to formal 
languages, like in [1, 5, 6]; however, there exist computational decision problems that can 
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only be modeled as string acceptance testing to Lz-languages (as defined in Section 3.3.1), not 
to languages, like the Maj2/3-XG-SAT. 
 

Thus, all computer theorists generally say 'problem' to mean 'language' and vice versa. 
See below an excerpt of text of a preeminent Professor in the area, in [10]: 
 

"By Savage's theorem, any PROBLEM in P has a polynomial size family of circuits. 
Thus, to show that a PROBLEM is outside of P it would suffice to show that its circuit 
complexity is superpolynomial." [The words PROBLEM are lowercased in the original] 

  
However, the set of all languages is a mere proper subset of the stronger and more 

powerful set of all Lz-languages (all the computational decision problems), as established 
below. 
 
3.3.1  More general definitions for RP and P and definition for Lz-language 
 

Definition 3.4. Let Lz be a language over a finite alphabet, Σ, and let L ⊆ Lz. We will 
call L an Lz-language. If Lz = Σ* , then L is a Σ* -language, a trivial Lz-language, which is the 
same as language (Σ* -language = language). The complement of an Lz-language A is another 
Lz-language Ā = Lz – A. Thus, Lz-language is simply a generalization to language and a 
string acceptance testing to L is a computational decision problem where the string to be 
tested is necessarily member from Lz. If language is a set, Lz-language is a set into another. 
 

Observe that a string acceptance testing to L is a computational decision problem, but 
L, rigorously, is not only a language, because L ⊆ Lz, which is more restrict than simply L ⊆ 
Σ* , which should hold if L was only a language [6]. Thus, all the computational decision 
problems can be modeled as string acceptance testing to Lz-languages, for to accept a string 
from any determined subset of Σ* is much more general than do it just from Σ*, of course. 
 

The main point here is that the central relevance of the languages is originated in the 
fact that they model problems, not the inverse. Hence, great part of the Theory of 
Computation is about languages because of the mistake referred in Section 3.3. When this 
mistake – that it is said as mistake because it leaves legitimate problems out of that old 
traditional definition – is fixed, the Theory of Computation will certainly study the 
generalization to language: The richer and stronger concept of Lz-language. 
 

A language over Σ is a subset of Σ* , and an Lz-language is a subset of the language Lz 
over Σ. However, as L ⊆ Lz and Lz ⊆ Σ* , then L ⊆ Σ*, which implies that all Lz-languages 
are Σ*- languages, or simply languages, too, naturally. Any language L is also an L-language, 
and any Lz-language L is also a language L. In fact, if Ly ⊇ Lz then any Lz-language L is 
an Ly-language L, too. But the great advantage of the Lz-languages is that string acceptance 
testing to ones can be much easier than to languages, because the strings x to be tested are in 
special form: x ∈ Lz (this is an absolute assumption). Hence, if we know that all the strings to 
be tested are from a fixed language Lz, then it is worth to model this problem as an Lz-
language; but if we do not know it, we must model it as a simple language, of course. 
 

Consequently, the concept of Lz-language allows the insertion of previous knowledge 
about the form of the strings to be tested – when they were already constructed in special form 
or previously accepted by another machine – into traditional concept of language.  
 



 6

(Note: If the machine M that decides an Lz-language L is fed a string x that is in Lz, 
then M must decide whether or not x is in L, anyway returning correct answer to x ∈? L; on 
the other hand, if M is fed any string that is not in Lz, it may do whatever, returning anything, 
even incorrect answer to x ∈? L [Σ* -language L, in this case], or even not halting at all.) 
 

For instance, the language {0n1n | n > 0} over {0, 1} is not regular, but verify that if Lz 
= {0n1n | n > 0} U {1n0n | n > 0}, for example, then the Lz-language L1 = {0n1n | n > 0} is 
regular and can be decided by the NFA M = ({q0, q1, q2}, {0, 1}, δ, q0, {q2}), where δ(q0, 0) = 
{q2}, δ(q0, 1) = {q1}, δ(q1, 0) = Ø, δ(q1, 1) = Ø, δ(q2, 0) = {q2}, δ(q2, 1) = {q2}, and there are 
not ε-moves. 
 

Verify that this NFA M recognizes the language L = 0{0, 1}* and {0n1n | n > 0} = 
0{0, 1}* ∩ ({0n1n | n > 0} U {1n0n | n > 0}). In fact, this is not coincidence: 
 

Theorem 3.1. If a machine M (DFA, NFA, PDA, DTM, NTM, etc.) recognizes a 
language L, then M recognizes any Lz-language L1 = L ∩ Lz. 
 

Proof. Suppose that a string x ∈ Lz-language L1 was accepted by a machine M: Then, 
x ∈ Lz (this is an absolute assumption: All the strings to be tested must be member from Lz) 
and x ∈ L (the language that M recognizes, regardless of the special form of x), which 
implies that x ∈ L ∩ Lz; on the other hand, if x ∈ L ∩ Lz, then x will be accepted by M, 
because x ∈ Lz (x can be tested) and x ∈ L (x will be accepted by definition of string 
acceptance testing to languages), which implies that the Lz-language recognized by M  L1  = 
L ∩ Lz. � 

 
See, thus, the proposed fix to the traditional formal definition for the class RP 

(Randomized Polynomial Time) [16]: 
 

Definition 3.5. Let L be an Lz-language recognized by an NTM (nondeterministic 
TM) M. L ∈ RP if and only if the following two conditions are satisfied: 

 
1. M accepts x ∈ Lz if and only if the number of the accepting poly-time 

computation paths on input x is at least some nonzero constant fraction q 
(independent of |x|) of all the computation paths. 

2. When x ∈ Lz and x ∉ L, all the computation paths of M on input x halt within 
polynomial time into non-accepting state. 

 
Note:  When M is formalized as a probabilistic polynomial-time NTM, the 
probabilities from its behavior are: in (1), Pr[M accepts x] = q (M halting within 
polynomial time into accepting state) and Pr[M rejects x] = 1 – q (either M halting 
into non-accepting state or not halting); and in (2), Pr[M accepts x] = 0 and Pr[M 
rejects x] = 1 (M halting within polynomial time into non-accepting state). 

 
See that the class NP, on the other hand, needs only one accepting poly-time 

computation path (since only one suffices, where q in this case is not constant independent of 
|x|, but decreases exponentially on it), which makes the fact that RP is a subset of NP obvious. 
In addition, the class P needs that the fraction above is 1 (since there is only one path in 
deterministic computations), which does evident that RP is also a superset of P. Note, yet, that 
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– as x ∈ Lz (this is an absolute assumption, by Def. 3.4) – we do not need to describe what 
language Lz is allowed here.  
 

Thus, if x ∈ Lz, x ∈ L and we run M on input x choosing uniformly at random a 
computation path for enough large number r  of times, then M accepts x with probability p so 
close to 1 as we want it (with p = 1 – (1 – q)r, where r  = log1–q(1 – p) does not depend on |x| 
(since p and q do not do), which is stronger than the poly(|x|) upper-bounded by Chernoff 
Bound [14], applicable, for example, to class BPP). On the other hand, if x ∈ Lz, x ∉ L and we 
run M on input x, then M rejects x with probability equal to 1, definitely. 
 

Verify that when Lz = Σ*  and all the computation paths of M run within old traditional 
polynomial time, the formal definition above is equivalent to the traditional one for the class 
RP – a set of mere languages –, which implies that this one is just a particular case of the 
proposed fixed definition. Consequently, we can name the traditional class RP as class 
Traditional -RP (or, shortly, TRP), where the mathematical truths on the traditional class RP 
continue holding in. Alternatively, we could call the true class RP defined above – an actual 
set of computational decision problems, or Lz-languages – as class Maj2/3-RP (or, shortly, 
MRP), for example, but this naming method would be a mistake: A subset would have the 
name of the set and the set would have a derived name of the subset, which is hard to explain, 
confuse and damages the clearness of the notation. The same happens with the class P in Def. 
3.6. 
  

Proposition 3.1. Maj2/3-XG-SAT is in class RP. 
 

Proof. Given n and a restricted type X program S, the question “Does S return a value 
1 for at least 2n+1/3 inputs of length n?” can be decided in nondeterministic polynomial time 
(time NP(n): as time P(n), using nondeterminism), since can be constructed a universal NTM 
that simply simulates the running of S and tests it for any 2n/3 possible inputs of length n at 
the same time (“on parallel”) and verifies in time NP(n) the returns: If they are 0 for all the 
inputs, then the NTM will answer “No” after the conclusion of the last computation path 
(branch); on the other hand, if at least one return is 1 then the NTM will answer “Yes” at the 
end of the first path that returns 1, regardless of whether the other paths are yet running. One 
and only one of these two occurrences must happen in time NP(n), by Def. 2.1. 
 

Finally, as the number of the accepting poly-time computation paths of this NTM on 
input w that it is in Maj2/3-XG-SAT is at least 2/3 of all possible ones, and there is no 
accepting path on input that it is not in it, this Lz-language is in RP, with the constant fraction 
q = 2/3. � 
 

Note that although the poly-time T(n) = O(ni) that all non-accepting and at least 
2n+1/3 accepting computation paths spend is a different polynomial for each input w, 
Maj2/3-XG-SAT is a single problem (it is false that any recursive decision problem is poly 
time reducible to it, since T(n) is not previously fixed for all S, but it is fixed for every one, by 
Def. 2.1 – See the note 1 below, for details), where i does not depend on n, even though it 
does on w. Consequently, the accepting computation paths is really poly-time one, by Def. 
3.7, and the proof above is wholly correct: Maj2/3-XG-SAT is in RP, undoubtedly. 
 

See that Maj2/3-XG-SAT has strings of the form 1n0s, where s is a DTM simulating a 
restricted X program S that accepts within polynomial time some string of length n (returning 
1 for at least 2/3 of all n-bit inputs). Notice that we do NOT need to check whether S is a 
restricted X program, by Def. 3.4. 
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(Note 1: Suppose that someone says that the Maj2/3-XG-SAT is not in RP, since its 
complexity class is really undefined, and it can be, for example, EEXP-Hard (for double 
exponential time), reasoning as below: 

 
“Let L be an EEXP problem, M be the deterministic Turing Machine that solves L in 

time t(n) = 22^{poly(n)}. Then we can reduce L to Maj2/3-XG-SAT as follows: Given an input x 
for the problem L, we construct a program S that ignores its input and simulates M on input x. 
The promise is satisfied by the constant polynomial p(n') = t(|x|), and clearly (S,1) is an 
instance of Maj2/3-XG-SAT if and only if M accepts x.” 
 

Fortunately, constructions like above cannot disprove that Maj2/3-XG-SAT is in RP, 
since they do not take into account that time P(n) is not previously fixed for all possible 
programs S, but it is fixed for every one, as stated in Def. 2.1 – hence, as 22^{poly(|x|)} is not 
upper bounded by any fixed poly(n), that program S is not a restricted type X program, and 
clearly (S,1) is NOT an instance of the Maj2/3-XG-SAT. 
 

Finally, see also that the function 22^{poly(|x|)} = t(|x|) is not constant, but depends on |x|. 
However, if x is fixed into that TM M simulated by S, then this function is a constant (and 
then M halts on x within only O(1) steps, since M and x are fixed independent of n); 
nonetheless, in this case, M does not solve L, of course, and then the disproof above fails.)  
 

(Note 2: Suppose, yet, that anyone else says that the Maj2/3-XG-SAT is not in RP, 
since Proposition 3.1 is wrong, as long as either no poly-time TM can simulate a universal 
TM, or it – about the universal NTM that simulates the running of S – does not consider the 
running time of this simulation, which could be nondeterministic non-polynomial. 
 

Fortunately yet, these refutations of Proposition 3.1 are equivocated, since a program 
S is always restricted (hence, it is NOT a universal TM), and the nondeterministic running 
time of the simulation of the program S (encoded into x) running for any 2n/3 possible 
inputs of length n at the same time IS necessarily (must be) nondeterministic polynomial, 
since time P(n) is a time-constructible function (for each fixed S), by Def. 2.1.  
 

See, however, this interesting review: 
 

“– The author proposes that Maj2/3-XG-SAT is in (promise-)NP  but not  in  
(promise-)P.  He is right about the second part, but incorrect about the first part: Maj2/3-XG-
SAT is unconditionally not in promise-NP.  He gives a simple but fallacious argument that 
Maj2/3-XG-SAT is in promise-NP on p. 8.  In note 2 on p. 8 he anticipates but rejects a 
counterargument, but he is wrong and this counterargument is essentially correct. 
 

The reason is as follows: for any Turing machine M and positive integer t, we can 
form a machine Mt that outputs 0 on all inputs except those of length t, on which it behaves 
like M.  If M always halts and M’s behavior depends solely on its input length (call this latter 
restriction semi-blindness), then Mt is always a restricted type-X machine. 
 

It is known there exists a unary language L that is decidable, yet it is not in EXPTIME, 
hence not in NP.  There is a semi-blind machine M that decides L correctly on each input 
having the form 1^t.  But if Maj2/3-XG-SAT were in promise-NP, then we could solve L in 
NP: given input x of form x = 1^t, we decide whether x is in L by running the presumed NP 
verifier on the input (Mt, 1^t), which obeys the promise.  (If x is not of form 1^t, then we can 
reject x.)” 
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Verify that that conclusion is not true: In order to try to decide that language L in NP, 
as proposed above, we must run the NP verifier on the inputs of form (M, 1^t), not (Mt, 1^t), 
since to solve whether M accepts 1^t is quite different from do it about Mt, for M is not the 
same thing neither has the same running time complexity as all the machines M1, M2, M3, ... 
taken into account as a [countably infinite] set. The running time of all those Mt is only O(1), 
since t is a fixed constant into Mt, independent of n (|input|), while L(M) is not even in 
EXPTIME (hence, M is not a restricted type-X machine, at all), which implies, fortunately, 
that the input (M, 1^t) does not obey the promise in Def. 2.1, and then L cannot be decided in 
NP as proposed by that smart reviewer, and then the disproof above fails too.  
 

See, also, another interesting and similar review: 
 

“– Let L be any computable language, encoded in unary, and M a deterministic TM 
that solves L. The program S = Sx takes its input y, and compare its length to x.  If |y| = |x|, 
then S(y) simulates M on input x, and, if M(x) accepts, S(y) accepts. Otherwise, S(y) rejects. 
If |y| is any other value, S(y) rejects. 

 
Clearly, this S runs in linear time, since all it has to do is count the length of y, except 

when |y| = |x|, but this is only finitely many exceptions, and hence doesn't change the 
asymptotic running time of S. To reduce L to Maj2/3-XG-SAT: map x to the pair (Sx, 
1^{|x|}).” 
 

Verify that that conclusion is not true too: By means of the same reasoning above, we 
could prove that that language L would be in NP, since Sx and its input may be mapped to a 
Boolean expression in deterministic polynomial time (for the running time of Sx is really only 
a fixed constant), and then this contradiction shows that this other disproof fails too.) 
 

In fact, all complexity classes can be generalized with the concept of Lz-language, like 
this new definition proposed for the class P: 
 

Definition 3.6. Let L be an Lz-language. L ∈ P if and only if for all x ∈ Lz, x ∈? L is 
decidable by a poly-time DTM. Be careful with the traps: For example, all Lz-languages Lz 
are trivially in P (where Lz can be any language, even non-Turing-recognizable ones), which 
does NOT mean that all languages Lz (Σ* -languages) are in P, noticeably. 
 

Notice that the proper definition of polynomial-time computation is generalized here, 
without losing its more important characteristic: To be understood loosely as “feasible in 
practice”, where the critique in [25] is not applicable: 
 

Definition 3.7: Poly-time computation. A computation is said to be polynomial-time 
if its running time T(n) = O(nk), where k = O(1), even that k depends some way on input. (n = 
|input|.) 
 

Into the old traditional definition, k must be a fixed constant (that does not depend on 
n, obviously), but this stronger restriction is not essential to the vital matter: To maintain the 
character of vaguely practicable for deterministic polynomial-time computations. In Maj2/3-
XG-SAT, k depends on the S encoded into w, but it is in O(1), since that even that k cannot 
be computed [1] neither is given, it is a fixed constant for each fixed S, by Def. 2.1. 
Furthermore, the traditional definition of polynomial time computations asserts a hidden 
assumption: k must be a priori a known and given fixed constant, as revealed in Section 
3.4.1.1 in [13]. 
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See that if T(n) = O(2poly(n)), for example, then T(n) = O(nk), where k (poly(n) logn 2) 
is not in O(1), evidently, and is upper unbounded (for non-constant poly(n), of course): hence, 
in this case T(n) is not polynomial at all. The same happens with T(n) = O(nlog n). If T(n) = 
O(nk), where k is, for example, the [arbitrary] position of the first 1 in w (or 1, if w = 0n), then 
k is not in O(1) too, for those possible positions can be from 1 to |w| = n, hence in the extreme 
case T(n) = O(nn). On the other hand, if T(n) = O(ng(n)), but now g(n) is upper bounded by a 
finite positive constant k, that is limn→∞ g(n) < k, then T(n) = O(nk), whence it is polynomial. 
 

Some experts are asserting: “– The Maj2/3-XG-SAT is not in RP (in the author's 
terms): the polynomial nk CANNOT depend on the input.” However, this assertion is false, 
being true only for the old traditional definition of poly-time computation, since that in the 
new definition (Def. 3.7), the polynomial CAN definitely depend on the input – as long as 
that k is in O(1). Think: This is just a matter of Math object definition, not of mathematical 
error or correctness, at all. We are not obligated to follow obsolete definitions only because 
they are established, unless the Science is finished (or dead). See Section 8. 
 

Very important: Verify that these new definitions of the classes P and RP are simply 
good generalizations of the old traditional ones: Any traditional P or RP problem IS too, 
respectively, in the new class P or RP defined above (even though the converse is in general 
false, since these new generalized classes are strictly larger than the traditional ones), and any 
superpolynomial deterministic or randomized problem is NOT in the new class P or RP, 
respectively, which proves that these generalizations are consistent and smooth. 
 
3.3.2  Lz-languages and Promise Problems 
 

An Lz-language L can be considered as a promise problem ∏, as introduced by Alan 
L. Selman [Information and Computation, Vol. 78, Issue 2, (1988), pp. 87-98] and defined in 
[9], where the promise (∏YES U ∏NO) = Lz, ∏YES = L, ∏NO = Lz – L, and its restricted 
alphabet {0, 1} is generalized to any finite alphabet Σ. Nonetheless, notice that the concepts, 
notation, generality, power and applicability of the Lz-languages are clearer, richer, simpler, 
conciser, more elegant, aesthetic and stronger than ones of the promise problems. 
 
 
4.  Demonstration that the Maj2/3-XG-SAT is not in P 
 

Theorem 4.1. P ≠ RP. 
 

Proof. As demonstrated in Sections 3.3.1, any instance of the Maj2/3-XG-SAT can be 
recognized in nondeterministic polynomial time and in randomized polynomial time. 
However, can it be recognized in deterministic polynomial time? 
 

By hypothesis, consider that it can: In this case, must exist a DTM Q that – given a 
positive integer n and a restricted type X program S into w – answers correctly within 
polynomial time the question “Does S return a value 1 for at least 2n+1/3 inputs of length n?” 
(If w is in Maj2/3-XG-SAT, then Q(w) = “Yes”, else “No”). Note: all the inputs for the 
program S in this Section are of length n. 
 

Proposition 4.1. The DTM Q is, in fact, a real computer program. Although it may 
work entirely in a different way from someone would expect from the method that the 
Maj2/3-XG-SAT was defined, Q cannot be a magical or dream machine, since it must be an 
actual machine. 
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So, let W: Σ* × Lz → N be a function with a DTM and a well-formed input for it as 
arguments, where if W(Q, w) = m (Q can simulate the running of S into w and test some 
inputs for S in such a simulation – considered here a step-by-step process running S into Q), 
then m is the number of inputs for S simulated by Q in this process: 0 ≤ m ≤ 2n.  
 

Note: It does not matter for this proof whether W is a computable function or not; and 
if X is not a DTM or is not interested in the Maj2/3-XG-SAT problem, then W(X, w) is 
defined as 0. 
 

Thus, in order to answer the question, there are no miracles: Q can act into only four 
possible ways (where m = W(Q, w)): 
 

1. Q simulates the running of S for: 
 

i. 2n/3 inputs or more (2n/3 ≤ m ≤ 2n);  
ii.  All the inputs from an arbitrary nonempty proper subset of all them with less 

than 2n/3 inputs (0 < m < 2n/3); or 
iii.  Only one input (or all from a nonempty proper subset of all them with less 

than 2n/3 inputs) previously computed whose return decides the question 
(m = d < 2n/3). 

 
2. Q does not simulate the running of S at all (m = 0). 

 
Proof. These ways are exhaustive: Either Q simulates the running of S or not; and, if 

Q simulates the running of S, then it can test on it 2n/3 inputs or more (1.i); arbitrarily less 
than these ones (1.ii); or just one (or all from a nonempty proper subset of all them with less 
than 2n/3 inputs) that was anyway previously computed whose return decides the question 
(1.iii). Unfortunately, there are no more alternatives besides that ones. (Note: Into ways (1.ii) 
and (1.iii), m must be polynomial in n in order to Q can decide the Maj2/3-XG-SAT in 
deterministic polynomial time, of course.) 
 

As well, the running time of a universal NTM that decides in time NP(n) the Maj2/3-
XG-SAT – as in the proof of Proposition 3.1 – cannot be upper bounded by any fixed poly(n). 
Moreover, a program S does not necessarily halt for all its possible inputs. Furthermore, the 
time P(n) in Def. 2.1 cannot be upper bounded by any fixed poly(n), too. Thus, in general, 
cannot exist any fixed poly(n) number of TM configurations that represents the entire 
processing of S. 
 

Additionally, as to find the input whose return decides the question and simulate the 
running of S only for this input is impossible (see in Way 1.iii below), the particular fixed 
running time P(n) of a specific restricted type X program cannot be computed in any fixed 
poly(n) upper-bounded number of deterministic computational steps. 

 
Hence, an instance of the Maj2/3-XG-SAT cannot be reduced within polynomial time 

into another one of a P(n)-time decidable problem, because the reducer machine must run 
within polynomial time in this case, but it cannot previously know or compute what upper 
bounds that time P(n), by Proposition 3.2 in [13]. � 
 

Suppose that someone claims, with the following argument, that the P ≠ RP proof of 
mine fails: 
 

“– The author assumes that the 4 ways mentioned are the only way to solve the 
problem.  Why can't the DTM Q decide the question some other way?” 
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The answer is not complicated: Q cannot decide the question by some other way 
because there is no another possible way to decide the Maj2/3-XG-SAT besides the four ones 
mentioned above: These ways do not specify type, structure, form, code, nature, shape or kind 
of computation, neither structure (or lack thereof) of data – but just the number (m) and kind 
of inputs (arbitrary or computed) tested in eventual simulated running of S –, into any 
running of any DTM that tries to decide the Maj2/3-XG-SAT: (1) 2n/3 inputs or more 
(2n/3 ≤ m ≤ 2n); (2) arbitrary ones less than 2n/3 inputs (0 < m < 2n/3); (3) computed 
ones less than  2n/3  inputs (m = d  <  2n/3);  or (4) none  (there is no simulating S at all) 
(m = 0). 
 

Can there be some other way? No, by a reasoning similar to pigeonholes from 
pigeonhole principle: Either Q simulates S or not. And simulating S for more than all inputs – 
or for any subset with exponential number of them – leads to exp(n) running time, as 
explained in the Way 1.i; less than none go to negative number of inputs, which makes no 
sense in actual computations; and between these limits the number and kind of inputs for 
eventual simulated running of S must be one from the four mentioned above. Consequently, 
all the possible deterministic computations to decide the Maj2/3-XG-SAT are really into one 
from these four ways. 
 

Can we create new ways to decide in deterministic polynomial time the Maj2/3-XG-
SAT combining the four ones? Unfortunately, no way: The way 1.i is useless to decide in 
deterministic polynomial time the question; the way 1.ii is useless to decide in any time the 
Maj2/3-XG-SAT; and the combination of the ways 1.iii and 2 results simply in the way 1.iii – 
when none result from the simulation is used by Q in order to answer the question, which is a 
case treated below in the way 1.iii. 
 

Hence, claims like above do not go to refute this P ≠ RP proof. 
 

Note, yet, that the method utilized in this proof cannot be adapted to decide whether 
SAT is in P, because if a program S is simulating a Boolean formula with n variables, it must 
always halt for all the possible inputs, and its running time must be the same for any input; 
however, these additional restricted conditions cannot be held in general restricted type X 
programs, like ones in the proofs of the Props. 4.2 and 4.3 below. 

 
Hence, to decide whether an arbitrary general deterministic computer program 

computes determined output for determined input (which is undecidable, by the Rice's 
Theorem [11]) cannot be reduced to SAT as it does to Maj2/3-XG-SAT (as demonstrated in 
these proofs), and then any attempt to adapt my proof to solve whether SAT is in P is 
condemned to fault. 
 

See that if S is simulating a Boolean formula with n variables, then the Rice's Theorem 
cannot be applied to the S behavior for any input, since it is restricted for all the possible ones. 
 

Finally, suppose that else one tries to refute the proof saying: 
 

“This proof follows a common theme: Defines an RP problem with a certain structure, 
argues that any algorithm that solves that problem must work in a certain way and any 
algorithm that works that way must examine an exponential number of possibilities. But we 
can't assume anything about how an algorithm works. Algorithms can ignore the underlying 
semantic meaning of the input and focus on the syntactic part, the bits themselves.” 

 
As in the previous “refutation” of my proof, the answer is also not complicated: If the 

DTM Q ignores the underlying semantic meaning of w and focus on its syntactic part, the bits 
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themselves, considering w just a series of bits, this approach only places Q into the Way 2, 
where the proof continues to hold, naturally. 
 

Shortly, the spirit of the proof is very simple: the Maj2/3-XG-SAT is decidable by 
brute-force search because whether S returns 1 for at least 2/3 of all the 2n possible ones is 
decidable, whereas whether S returns 1 for at least one from a subset with less than this 
quantity (2/3 of 2n = 2n+1/3) is in general undecidable (since S can even not halt for any input 
from such a subset), by Def. 2.1, which does that all the other ways to decide the Maj2/3-XG-
SAT (without brute-force neither randomized searching) be absolutely hopeless. 
 

Consequently, we can say that one of the profoundest questions in Complexity Theory 
was solved by this plain ingenious characterization, the Def. 2.1! 
 

Be brave and see below that all these four exhaustive ways to decide in deterministic 
polynomial time the Maj2/3-XG-SAT fail: 
 
Way 1.i Q simulates the running of S for 2n/3 inputs or more (2n/3 ≤ m ≤ 

2n): 
 

The obvious way to implement the DTM Q is to construct a universal DTM that 
simulates the running of S and submits to it any 2n/3 or more inputs, verifying whether it 
returns 1 for at least one (in a breadth-first search, to avoid running forever in a computation 
path that does not halt): If all returns are 0, then w is not in Maj2/3-XG-SAT; otherwise, then 
it is. 
 

Nevertheless, this brute-force method, on worst case, can decide the problem only at 
the end of testing at least 2n/3 inputs, in time exp(n). 
 

Even though the probability of answer incorrectly after the test of only 32 inputs 
(chosen uniformly at random), for example, is very very low: Less than 3-32 (independent of 
input size), when S does not return 1 for any of these 32 inputs, and then Q does not answer 
“Yes”, but w, very very unfortunately, is really in Maj2/3-XG-SAT. 
 
Way 1.ii Q simulates the running of S for all the inputs from an arbitrary 

nonempty proper subset of all them with less than 2n/3 inputs (0 < m 
< 2n/3): 

 
Note that to simulate the running of S only for a polynomial number of arbitrary inputs 

(or just for a number of them less than 2n/3 ones – for instance: nlog n) does not work: Even 
the test of 2n/3 – 2 inputs on the simulation cannot help to decide whether S returns 1 for 
some from the not simulated ones (in fact, this simulation cannot help to decide even whether 
S simply halts for a specified input from these ones). 
 

Moreover, even the simple question whether S halts for at least one input from an 
arbitrary nonempty proper subset of the set of all the 2n possible inputs with less than 2n/3 
ones is undecidable, of course, by Def. 2.1. (Obs.: This question is only decidable for a subset 
with at least 2n/3 inputs: The answer is always “True”, by Def. 2.1.) 
 
Way 1.iii Q simulates the running of S only for an input (or inputs) previously 

computed (m = d < 2n/3): 
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Proposition 4.2. A DTM Q cannot compute, without simulating the running of S for 
at least 2n/3 inputs, a nonempty proper subset of ones, where the return from S for one of 
them decides the question, and then to simulate the running of S only for these inputs to 
decide the Maj2/3-XG-SAT. 

 
Proof. Let a well-formed string f be constructed with an arbitrary n, and let the 

restricted type X program F be below, where Q was, by the Turing-Church Thesis, translated 
into a computer program where the instructions Simulated_by_Q[e] := True; and 
Number_of_Simulated_Inputs := Number_of_Simulated_Inputs + 1; were included just 
before any instruction of this program that starts the simulation of F for any input e 
(Simulated_by_Q and Number_of_Simulated_Inputs are global variables of type dynamic 
array or vector of Booleans values and integer that were initialized with False in all its 
positions and 0 (zero), respectively). 
 

We call Q’ to this program derived from Q. Verify that if Q runs in polynomial time, 
then Q’  also do it, of course, and the behaviors and results from Q’ and Q are the same. 
 
01. F(string input) // F is a restricted type X program, since Q’  and R are supposed poly-time 

// DTMs, and F will either return only 0’s or at least 2n+1/3 1’s 
02. { n := length(input); 
03.   if (R(input) = “Yes”) return(0); // R returns always within polynomial time “Maybe” 
04.   if (R(input) = “No”)  return(1); // Thus, R does not matter to the behavior of F 

// But Q does not know it: See its work is very hard! 
05.   concurrent_ifs // only one of the returns can close the concurrent instructions block  
06.   {   // below, where the two if’s run concurrently 
07.     { if (Simulated_by_Q[input]) return(0); }  // There will be d of these returns … 
08.     { if (Number_of_Simulated_Inputs > 2^n/3) return(0); } … and 2n-d of … 
09.     { if (Q’(f) = “Yes”)  return(0); else return(1); } … these ones 
10.   } 
11. } 
 

Now, if Q does not simulate the running of F for at least 2n/3 inputs, then it will 
unavoidable answer incorrectly “No”, after F returns 0 for all the simulated inputs, since F 
will in this case return 1 for all the non-simulated inputs (there is at least 2n+1/3 ones, by 
Proposition 4.2), because for these ones there will be chance for the third concurrent_if (line 
09) to detect at some moment the answer “No” from Q’, and then to return 1 (note that, as the 
Number_of_Simulated_Inputs < 2^n/3, the second concurrent_if (line 08) is irrelevant in this 
case). Note that Q’  cannot answer “Yes”, because F will always return 0 for all the d 
simulated inputs, by the first concurrent_if (line 07), and the answer from Q’ is based in the 
returns from F for all the simulated inputs. See that the contents of the global variables 
Simulated_by_Q (line 07) and Number_of_Simulated_Inputs (line 08) are known into F, 
because Q’ is concurrently running (line 09). 
 

On the other hand, if Q simulates the running of F for at least 2n/3 inputs, then it 
answers correctly “No”, after F returns 0 for all simulated inputs, since F, in this case, returns 
0 for all ones because the return of all 0 is by the first and second concurrent_if (since now 
the Number_of_Simulated_Inputs > 2^n/3), when then there is no chance for the third one to 
detect the answer “No” from Q’, and then to return 1. Unfortunately, Q can, by this way, 
decide the Maj2/3-XG-SAT just in time exp(n), as was treated in Way 1.i. 
 

See that if Q does not simulate the running of S for any input at all – or if none result 
from the simulation is used by Q in order to answer the question –, then it will inevitably 
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answer incorrectly at some moment, by diagonalization that exists into string f, on the third 
concurrent_if (line 09) of F. 
 

Finally, suppose that Q could decide whether there is diagonalization into string f. In 
this case, Q could stay running forever, without simulating the running of F (or simulating it 
and no using the results 0 from this simulation to answer “No”) and no returning anything at 
all, which would imply that f is not a well-formed string, and then Q would not be incorrect. 
Alternatively in this case, Q could attempt to decide the question either without simulating the 
running of S for any input at all, or simulating it for some inputs and ignoring the results 0 
from this simulation (there is no result 1, of course), either considering thereby w just a bit 
string, or engaging in more indirect reasoning about the code of S, as in the Way 2 below. 
 

However, Q’ can in general be any arbitrary deterministic program and can compute 
using or not the value of input for F, besides its proper input (the string f). Here, if Q’ (f) runs 
in polynomial time either returning always “Yes” for all values of input not simulated by Q, 
or returning another result for at least 2n+1/3 inputs, then f is a well-formed string 
(independently of the behavior of Q(f)), and there is no diagonalization into it. Consequently, 
there is diagonalization into string f if and only if Q(f) = Q’ (f) independently of the value of 
input. 
 

Hence, if Q can decide whether there is diagonalization into string f, without 
simulating the running of S for at least 2n/3 possible inputs, then Q can decide whether the 
language of a given arbitrary TM (Q’ ) has a particular nontrivial property (Q’  accepts f if and 
only if itself (Q) does it; in other words, Q(f) = Q’ (f) independently of the value of input). 
However, this problem is undecidable, by the Rice's Theorem (reflect: Q’  could be any 
computer program). Hence, Q cannot decide it; thus, Q is condemned to fault, too: without 
knowing neither computing whether there is diagonalization into string f, to answer 
incorrectly the question, by the diagonalization above; or to simulate the running of F for at 
least 2n/3 inputs, in time exp(n). � 
 

Note that, in general, the Rice's Theorem can be applied to the S behavior for a 
nonempty proper subset with at most 2n/3 inputs (because this behavior is arbitrary, by Def. 
2.1: in this case, S can not halt for any input from this subset), but cannot do it to the total S 
behavior for a subset with more than 2n/3 inputs (since this behavior is restricted, by Def. 2.1: 
in this case, either all results from S are 0 or at least one is 1). 
 
Way 2.   Q does not simulate the running of S at all (m = 0): 
 

If the running time of Q depends on the one of the restricted type X program S into w 
for some input (where if S does not halt for any input, then Q does not halt at all, too), which 
occurs when Q acts reducing w into instance of another problem or simulating the running of 
S, then the use of the diagonalization method in order to demonstrate that Q cannot decide the 
problem fails, since Q does not have to be as restricted as S. But, as these running times are 
independent ones in the special case treated here, where w is considered either just a bit 
string, or Q decides whether S returns 1 for some input by engaging in more indirect 
reasoning about the code of S, without simulating it at all, then we can use diagonalization in 
order to demonstrate that Q cannot decide the Maj2/3-XG-SAT. E.g., if Q converts a problem 
in E without 2n/10-size circuits into a PRG which fools nc-size ones, for any fixed c, then Q is 
here. 
 

Note that if the running time of Q is anyway always greater than one of the restricted 
type X program S into w for some input (where, remember, if S does not halt for any input, 
then Q does not halt at all, too), then Q is, maybe indirectly, simulating the running of S for 
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this same input or reducing the instance of the Maj2/3-XG-SAT constructed with S to some 
instance of another problem, of course. In general, to reduce within polynomial time an 
instance of the Maj2/3-XG-SAT is impossible, by the proof of the Proposition 4.1. We will 
see below that to decide the Maj2/3-XG-SAT without simulating the running of S – or do it in 
a running time upper bounded by any fixed (or even non-fixed) integer polynomial function 
of |w| – is impossible, too: 
 

Proposition 4.3. A DTM Q cannot, without simulating the running of S for any input, 
decide the Maj2/3-XG-SAT problem. 
 

Proof. Let S encoded into w be the program: 
 
01. S(string input) 
02. { 
03.    n := length(input); 
04.    if (integer(input) > 2^n/3) { if (T(w) = “Yes”) return(0); else return(1); } else return(0); 
05. } 
 

Where T is an arbitrary deterministic program. Hence, if Q can, without reducing or 
simulating the running of S for any input, decide the Maj2/3-XG-SAT problem, then it can 
decide whether the language of T has a particular nontrivial property: T(w) != Q(w), since 
otherwise then Q cannot answer anything within polynomial time, because whatever it 
answers will be incorrect, by diagonalization that holds in this case, in line 04 (S returns 0 for 
all inputs less than 2^n/3, and the answer from T(w) is inverted and returned by S when it 
process an input greater than 2^n/3: See that there are 2n+1/3 inputs of this form. Thus, if 
T(w) returns “Yes”, then w is not in Maj2/3-XG-SAT, and vice versa). However, if T(w) != 
Q(w) and T(w) runs in polynomial time, then there is no diagonalization into S, and Q must 
decide what T(w) returns to decide the question. That is, before Q answers whatever within 
polynomial time, it must decide whether T(w) = Q(w), to avoid that the diagonalization above 
forces it to error (reflect: T can be any computer program). 
 

Nevertheless, this problem is undecidable, by the Rice's Theorem; hence, the DTM Q 
cannot, without reducing or simulating the running of S for any input, decide the Maj2/3-XG-
SAT. � 
 

Observe that if Q tries to test whether the string w above is in Maj2/3-XG-SAT  
(where Q(w) can return:  “Yes”; “No”; or it does not halt) simulating the running of S for all 
the possible inputs, then S returns in time P(n) 0 for all ones less than 2^n/3, but, if T(w) = 
Q(w), then the simulation of the running of S never halts and never returns any value for any 
input greater than 2^n/3, by infinite regress, which implies that Q does not halt and never 
answer incorrectly, even though without deciding whether T(w) = Q(w), obviously, since it 
remains forever waiting the return from this simulation for any input greater than 2^n/3, 
deluded without knowing that it never does. Notice that if T answers anything within 
polynomial time, then w is a well-formed string; otherwise, then it is not. 
 

Perceive that to state that Q answers whatsoever if and only if w is a well-formed 
string does not work, because, as demonstrated in Section 3.3, L (the set of all well-formed 
strings) is a non-RE language, which implies that Q cannot decide whether w is a well-formed 
string in order to decide accordingly whether it can answer anything without mistaking. That 
is, in order to Q works in this case, it must assume absolutely that w is a well-formed string, 
and then this assumption implies that it is really true, and that Q for the input w returns within 
polynomial time incorrect answer, by the diagonalization above into S (line 04). 
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Proposition 4.4. A DTM Q with running time upper bounded by ƒ(|w|), where ƒ is a 
fixed [or even unfixed] integer polynomial function of |w|, cannot decide the Maj2/3-XG-
SAT. 
 

Proof. Let S encoded into w be the program: 
 
01. S(string input) 
02. { 
03.    n := length(input);  
04.    if (integer(input) > 2^n/3) { 
05.       concurrent_ifs { 
06.          if (T(w) = “Yes”) return(0); else return(1); 
07.          if (Timer > |w|k)   return(1); 
08.       } 
09.    }  
10.    else return(0); 
11. } 
 

Where T is an arbitrary deterministic program, k is an arbitrary fixed finite positive 
integer, Timer counts (in another “thread” or “concurrent process”) the running time of S, and 
the two internal if  are evaluated concurrently while T runs for the input w. Thus, as the 
functions length and integer are poly(n)-time, S is a restricted type X program, regardless of 
the behavior of T. See that, as S returns 0 for all inputs less than 2^n/3, if T(w) answers in 
running time less than |w|k, then its answer is inverted when S process any input greater than 
2^n/3, and T is forced to the error if it tries to be a decider for Maj2/3-XG-SAT. 
 

Therefore, as T(w) can be equal to Q(w) – (if Q and T are equivalent, for instance) – 
even though Q cannot decide whether it is true that T(w) = Q(w), by the Rice's Theorem 
(reflect: T can be any computer program) –, this implies that, for large enough k (when  |w|k > 
ƒ(|w|), Q fails: It cannot know or compute that it cannot in this case answer correctly the 
question in running time less than |w|k, by the diagonalization above. Hence, Q is again 
condemned to fault: To answer incorrectly the question before |w|k computational steps, for 
some large enough k. Note yet that Q cannot adjust ƒ(|w|) in order to it is always greater than 
|w|k, since this polynomial is a priori unknown or not given and – by Proposition 3.2 – it 
cannot be computed within deterministic polynomial time. � 
 

Observe again that if the DTM Q decides the Maj2/3-XG-SAT simulating the running 
of S, then Q cannot run in time upper bounded by any fixed polynomial function of |w| (in 
fact, none TM – DTM or NTM – that decides the Maj2/3-XG-SAT can do it), undoubtedly, 
by Def. 2.1. 
 
Conclusion: 
 

As demonstrated above, all the four exhaustive possible ways to decide in 
deterministic polynomial time the Maj2/3-XG-SAT fail: Consequently, there exists a 
computational decision problem that can be decided in randomized polynomial time, but not 
in deterministic polynomial time, which implies P ≠ RP, naturally. Hence, the 
derandomization [15] is a process that does not work in general in our sad computational 
world. � 
 

For this reason, by union of the Rice's Theorem, the diagonalization method and the 
complexity classes P and RP, this proof is more a beautiful unification and an amazing 
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synthesis between the Computability Theory and the Computational Complexity Theory, like 
the one in [13]. 
 
 Lastly, someone can say that if a fixed and known p(n) ≥ time P(n) of the program S 
into w is given (see this one is not deterministic poly-time computable, by Proposition 3.2), 
then the instances of the Maj2/3-XG-SAT can be reduced to Boolean formula ones by Cook-
Levin Theorem, and then if the SAT is decidable in deterministic poly-time, then the Maj2/3-
XG-SAT is too. Big idea! 
 

This conclusion is erroneous, however, since knowing a fixed polynomial p(n) ≥ that 
time P(n) is unnecessary to decide the problem (the universal NTM in the proof of 
Proposition 3.1 and the universal DTM in Way 1.i decide the Maj2/3-XG-SAT without 
knowing this information (or without such an input), naturally), proving that randomized 
computation is fundamentally much more faster (even though essentially approximate) than 
deterministic computation, and that the brute-force or randomized search are unfortunately 
unavoidable in the real-world computations (I’m very sorry): To verify a correct answer is 
definitely very easier than find it, naturally. 
 
4.1  Running time of the functions into programs 
 

About running in time P(n) and time greater than P(n), let the function be: 
 
01. Poly_Function(string input) 
02. { 
03.    int i, counter := 0, n := length(input); 
04.    for i := 1 to n^10 { counter := counter + 1; } // poly(n) upper bounded running time 
05.    if (counter > 100) return(1); else return(0); 
06. } 
 

The function above evaluated at string input is just a number, naturally. But we can 
decide that its running time is poly(n) upper bounded, where n = |input|. We don't need a TM 
to decide it. On the other hand, let the function be: 
 
01. SuperPoly_Function(string input) 
02. { 
03.    int i, counter := 0, n := length(input); 
04.    for i := 1 to 2^n { counter := counter + 1; } // exp(n) upper bounded running time 
05.    if (counter > 100) return(1); else return(0); 
06. } 
 

Of course, the running time of the function above is exponential in n. We know 
countless functions as the ones above [2] to use them in order to make restricted type X 
programs. Constructing restricted type X programs using algorithms with known running time 
is human work, not TM computation [2]. 
 
4.2  Example of construction of an instance of the Maj2/3-XG-SAT  
  

Let the restricted type X program S be: 
 
01. S(string input)  
02. { 
03.    remainder := mod(integer(input), 4);   // remainder on division of input (converted into 
 // integer) by 4  
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04.    if (remainder < 3) return(Fun2(input)); // returns the value returned by Fun2 and halts  
05.    if (remainder = 3) return(Fun1(input)); // never halts 
06. } 
 
07. Fun1(string input) 
08. { 
09.    do { input := “1”; } while (1 = 1); // infinite loop 
10.    return(1); 
11. } 
 
12. Fun2(string input) 
13. { 
14.    int i, counter := 0, n := length(input); 
15.   for i := 1 to n^10 { counter := counter + 1; } // poly(n) upper bounded running time  
16.   if (counter > 0) return(1); else return(0); 
17. } 
 

Thus, we can simply convert this program S into a DTM M, translate it into a binary 
form s, and then construct the well-formed string w = 111111110s, an instance of the Maj2/3-
XG-SAT. 

 
Here, hence, constructing Maj2/3-XG-SAT instances, it stands very clear that the 

human reasoning is much more powerful than mechanical (TM) computation. 
 
 
5.  Baker-Gill-Solovay Theorem and the Proof 
  

Verify that the proof does not use the diagonalization method (except in the justified 
special cases in Section 4) and it is based about the difference, on worst cases, between 
running times from a DTM and an NTM (probabilistic TM) that recognize the Lz-language L, 
as demonstrated in Way 1.i of Section 4 compared to the proof of Proposition 3.1. 
 

Moreover, notice that the addition into the proof methods of oracles to a PSPACE-
Complete language W does not imply that false statement PW ≠ NPW (because the proof cannot 
be adapted to demonstrate that PW ≠ NPW, since a DTM Q with an oracle to W could simulate 
any NTM with the same oracle using only a poly(n)-quantity of space, in an adapted Way 1.i, 
which would otherwise prove that PW =  NPW). 
 

These facts imply that the Baker-Gill-Solovay Theorem of inseparability of the classes 
P and NP (hence, P and RP) by oracle-invariant methods (techniques that are conserved under 
the addition of oracles, like the pure diagonalization method without algebraic oracle [8]) does 
not refute this P ≠ RP proof. In other words, my proof technique does not relativize [4]. 
 
 
6.  Razborov-Rudich Theorem and the Proof 
  

SAT's weakness – The proof does not try to prove any lower bounds on the circuit 
complexity of a Boolean function, because it does not try to solve the still open question 
whether SAT is in P, since to prove P ≠ RP it was not necessary to solve the SAT question 
(for the proof, different from the wrong conclusion in [3, 6], it is irrelevant whether SAT is in 
P), whereas it was enough to prove that Maj2/3-XG-SAT is in RP but not in P: Thus, the 
Razborov-Rudich Theorem of the Natural Proofs does not refute this proof. In other words, 
my proof technique does not naturalize [7]. 
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7.  Related Work, Aaronson-Wigderson Theorem and the Proof 
  

There is no relevant related work on the goal to really solve the P versus NP question. 
From important papers upon the matter, there are only some “negative” results, like the ones 
referred to in Sections 5 and 6 and, more recently, as an extension of the relativization in 
Section 5, the proof that techniques that are conserved under the addition of an oracle and a 
low-degree extension of it over a finite field or ring cannot work on this question too, by the 
concept of algebrization, explained in [8]. 

 
Remember, however, that my proof does not use the pure diagonalization method (as 

referred to in Section 5), but it exploits properties of computation that are specific to real 
world computers, and then this new barrier is not valid to refute it, too.  
 
 
8.  Expert Advice & Academic Honesty 
  

A reviewer, referring to the technical report in [17], has said “– It is disconcerting to 
see how the present author continues to ignore expert advice. His title borders on, and perhaps 
transgresses, academic honesty. Papers with such grandiose claims should only be considered 
after an endorsement by an expert.” 
 

The heart of my paper is just challenging some traditional definitions on TCS field, 
essentially the need of polynomial uniformity on the definitions of the complexity classes P 
and RP. However, that technical report says, for instance: “– As ... Definition 3.5 of his paper 
... needs to before the universal quantification on x fix a polynomial bounding the length of 
the certificates, we from here on assume that his definition is viewed as being modified to do 
that ...” 
 

So, as my proposed new definitions are so distorted in that expert advice, it has very 
low value in order to evaluate my proof, thus ignoring it is not really academic dishonesty at 
all, but only logical consequence of that challenge upon enhancing those definitions.  
 
 
9.  Freedom & Mathematics 
 
 “– The essence of Mathematics is Freedom.” (Georg Cantor) [22] 
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