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Definition of Restricted Type X Program

Definition of the Majority2/3 Extended General Shtibility — Maj2/3-XG-SAT
Generalization to classes P and RP
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Demonstration that the Maj2/3-XG-SAT is not in P
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1. Introduction

We, following The Barbosa’'s Programand the ideas proposed in [13], could
generalize the concepts concerning the class RRd(Raized Polynomial Time) in order to
settle the P versus RP question, which is done f&beut thisProgram see yet [18, 20].)

Accordingly, in Sections 2 and 3 thestricted type X programand theMaj2/3-XG-
SAT problem are formally defined, and some notes actuded to avoid the traps in these
definitions. In order to define thdaj2/3-XG-SAT the poly-time computation is redefined in
more general form. So, it is proved that Maj2/3-XG-SATis in RP. Then, in Section 4 it is
proved that this problem is not in P (therefdPe RP, naturally, leading td&® # BPP, P #
ZPP, and other great related results), by demonstrdhiat it is impossible that any poly-time
deterministic computation solves thaj2/3-XG-SAT

In this proof, nothing is assumed about type, $tmg; form, code, nature, shape or
kind of computation, neither structure (or lackréud) of data, eventually used into any DTM
that tries to decide the problem in polynomial tifd¢herwise, my proof exploits properties
of computation that are specific to real world cangps (withoutoracles, infinite TMsand
other supernatural devices). In Sections 5, 6 gnill i58 demonstrated that the theoretical
barriers against possible attempts to solve the.RR¥ question (since PRP leads to B
NP, for Pc RP and Rz NP) are not applicable to refute my proof. FinaillySections 7 and
8 there are some comments about related work ¢&rtreereof) to really solve this question,
and references, respectively.

Shortly, in order for this B RP proof of mine be accepted, it is sufficient tine fact
if there is arL-language (promise problem) separating complexégses, then they are truly
distinct, and the Def. 3.7 are both accepted. @enstic revolution/paradigm shifts, see [18].

2. Definition of Restricted Type X Program

Definition 2.1. Let S be a deterministic computer program, iebe a finite positive
integer and letime P(n)be a poly(n) upper bounded number of determinstimputational
steps (where time P(n) is not previously fixed d&tirpossible programs§, but it is fixed for
every one)S is arestricted type X progrant and only if the following three conditions are
satisfied:

1. S allows as input ang-bit word (member of arbitrary lengthfrom {0, 1}").
2. TheS behavior must be for each input one of the follayyi
I. Sreturnso;
il. Sreturnsl; or
iii. Sdoes not halt (never returns any value).

3. The totalS behavior must be for eachone of the following:

i. Sreturns in time P(n) for all the 2 possible inputs of length; or
ii. Sreturns in time P(n) for at least 2"*¥3] possible inputs of length.

Note 1 The presence @& is not to be decided — see Section 3.3.1. Testimgther a
computer program is a restricted type X progranh mat be necessary to the pro8fwill be
given as an absolute assumption: It IS a restrityee X program, and this fact will NOT be

2



under consideration: This is not a contradictioefirdtely, since we can easily create

innumerous programs of this type and — without néeelding about their types — produce a
myriad of instances of the Maj2/3-XG-SAT problentwihem — see Sections 4.1 and 4.2, for
details.

Note 2 There is no need that the polynomial running simevolved in a proof must
be previously fixed in order to be defined: For raxée, what is the fixed polynomial that
upper bounds the running time of the reducer covakein the Cook-Levin Theorem? There
is no such fixed polynomial, since this running dirdepends on the NP problem whose
instance is to be reduced to a Boolean formulathitrunning time of this reducer is (and
must be) polynomial, it is not undefined, of courstherwise there would be no NP-
Completeness. (This insight is formalized in thd.[3e7.) About this issue, see yet [23] and
[24].

Notice that it does not matter at all that we hawdifferent time bound for each NP
problem, but the same time bound for each instaheefixed one, since for this reducer any
instance from every NP problem is like just a mepitto a deterministic computer program:
what is important here, in fact, is that that polymal time bound is NOTiniform whereas it
is — without any contestation — considered very defined.

Note 3 The running time of a fixedrogram (or machine} on those inputs for which
it halts is bounded by a polynomial P(n) (whichaigime-constructible function (for each
fixed S), evidently®!), hence there must be an equivalent machine (b &&ed S) which
always halts, and still runs in deterministic paymal time, of course. This, however, is not
the main point: It is unimportant really whetheer must be such an equivalent machine:
What matters for my proof, after all, is that teiguivalent machine (or program) cannot in
general be constructed within deterministic polyrarime, at all, since that polynomial P(n)
is a [prgori unknown or not given and cannot be computed witteéterministic polynomial
time (131,

Note 4 Into the traditional definitions of the classear®l RP, a polynomial P(n) must
be fixed for whichever progran$ (in order to the Maj2/3-XG-SAT problem (Def. 3i%)in
traditional RP), and it is only over the class @f polynomial-time machines that such a
polynomial is not fixed. However, into the new aions of the classes P and RP (Defs. 3.5,
3.6 and 3.7), there is no need that there is a fpa@ynomial P(n) for all possible prograr8s
in order to the Maj2/3-XG-SAT problem is in the nelass RP (Def. 3.5) (sd&roposition
3.1). Thus, the comparison with the Cook-Levin Tleew is here quite well placed (in the
note 2above).

3. Definition of Majority2/3 Extended General Satifiab. — Maj2/3-XG-SAT

Definition 3.1. Let S be a restricted type X program and ebe a finite positive
integer. The problenMajority2/3 Extended General SatisfiabilifiMaj2/3-XG-SAT is the
question “DoesS return valuel for at least 23] inputs of lengtm?” Thus, in the Maj2/3-
XG-SAT question, the input is the p&B,1"), clearly, wherel" is justn in unary form. Note
that the specific and fixed time P(n) relatedstis NOT given at all.

Be careful with a possible confusion made about Meg2/3-XG-SAT and the
Bounded Halting problem (BH), defined over triples = (M,x,1¥), where M is a
nondeterministic maching,is a binary stringk is an integer, anal € BH if and only if there
exists a computation dfl on inputx that halts withirk steps??: The Maj2/3-XG-SAT is a
very different problem, since the time P(n) is gimen, and the progra@into the paigkS,1")
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alwayshalts for at leagt2™*%/3] inputs of lengtm, but maybeS does not halt for all the other
ones. Furthermore, the Maj2/3-XG-SAT cannot be cedun polynomial time to BH (— See
the proof of Proposition 4.1). In order to undemstavhy, verify that my Maj2/3-XG-SAT
problem is in the new [generalized] class RP (Be3), byProposition 3.1, but it is not in that
old traditional one.

See, yet, that the Maj2/3-XG-SAT is also so digtinom the PP-Complete problem
MajSAT, defined over Boolean formulae.e=MajSAT if and only if more than half of all
possible assignments make F thie The Maj2/3-XG-SAT, on the other hand, by Def.,2sl
an especially diverse problem, since the numbassignments (inputs) that maReo return
1 is always either none at all or greater th&f/2; besides the fact th&has a much more
complex behavior than a simple Boolean formula@ardeven not halt for some inputs.

3.1 Definition of well-formed string

Definition 3.2. Letw be a string from @, 1} . w is awell-formed stringf and only if
w has the forml*0s — wherel* is a finite positive integem encoded in unary form argis
the binary representation of the DTM (deterministiaring Machine) that simulates a
restricted type X progran®. Forn = 13, a well-formed stringv would be, for instance,
1112122221111010010001010011100100101011001001010110010010110000110...1

3.2 Definition of the Maj2/3-XG-SAT as well-formed string acceptance
testing to a languagd-

Definition 3.3. Let L be a formal language over the alphabet {0, 1}. A well-
formed stringw € L if and only if the DTM encoded intev returnsi for at leasf 2"Y3]
inputs of lengtm. The Maj2/3-XG-SAT is the well-formed string actapce testing th..

Note that as the size of a restricted type X pnogsas constant om (]S[n) =c), the
length of the DTM that simulat&$is constant too on (|s[n) =k), and thefqw|=n + 1 + k
Thus, time P(n) is the same as timpuMp(and time exp(n) is the same as time gxp(

3.3 Class of the langugeL and Classof the L.-languageL

L is a nonrecursively enumerable (non-RE or nonslgsrecognizable) languadg,
since it is undecidable whether or not an eventesdilt 1 from a computer program occurs
within polynomial timel*¥], besides the undecidability even whether justaitshfor some
input 1,

(Note: The undecidability of the languade does NOT contradict the proof. The
Maj2/3-XG-SAT is not the undecidable decision pesblw ? L, but just the decidable one
well-formed string w €? L, as explained in Section 3.3.1, since a well-fameg&ingw is
given as an absolute assumption: IS well-formed string, and this fact is NOT under
consideration. See that exactly the same kind afestent holds to traditional formal
languages, where the absolute assumption is thasttings to be tested are members from
¥ [1] )

Language Incompleteness The computer theorists generally make a big kestan
definition of computational decisioproblem They think that ones is the same thing that
languagesas if all decision problems could be modeledtasgacceptance testing to formal
languages, like in [1, 5, 6]; however, there exisiputationaldecision problems that can

4



only be modeled as string acceptance testing-tanguagegas defined in Section 3.3.1), not
to languages, like the Maj2/3-XG-SAT.

Thus, all computer theorists generally gapblen to meanlanguagéand vice versa.
See below an excerpt of text of a preeminent Psofas the area, in [10]:

"By Savage's theorem, any PROBLEM in P has a polph@me family of circuits.
Thus, to show that a PROBLEM is outside of P it ld/@auffice to show that its circuit
complexity is superpolynomia[.The wordsPROBLEMare lowercased in the original]

However, the set of all languages is a mere prepbset of the stronger and more

powerful set of allL~languages(all the _computational decision problems), as kestiaed
below.

3.3.1 More general definitions for RP and P and definitionfor L.-language

Definition 3.4. Let L, be a language over a finite alphaldgtand letl < L.. We will
callL anLzlanguage If L; =X*, thenL is aX*-language, #rivial L-language which is the
same as languag&{-language = language). The complement ol atanguagéA is another
L-languaged = L, — A. Thus, Lz-languageis simply a generalization tanguageand a
string acceptance testing tois acomputational decision problemvhere the string to be
tested imecessarilymember froml_.. If languageis aset L -languageis aset into another

Observe that a string acceptance testing t® acomputational decision problerbut
L, rigorously, is not only &nguage becausé. — Lz, which is more restrict than simplyc
>*, which should hold ifL was only a languag&. Thus, all the computational decision
problems can be modeled as string acceptancedestin-languages, for to accept a string
from any determined subset®f is much more general than do it just fr&f of course.

The main point here is that the central relevarfah® languages is originated in the
fact that they model problems, not the inverse. ddengreat part of the Theory of
Computation is about languages because of the kaistferred in Section 3.3. When this
mistake — that it is said awistakebecause it leaves legitimate problems out of tidt
traditional definition — is fixed, the Theory of @putation will certainly study the

generalization to language: The richer and strongecept ol ;-language.

A language oveL is a subset af*, and arLz-language is a subset of the langubge
overX. However, ad. — L; andL; — ¥*, thenL < X*, which implies that alL.-languages
areX*-languages, or simply languages, too, naturally. lamguagd. is also arl_-language,
and anylz-languagel is also a languagk. In fact, if Ly D Lz then anylLz-languagel is
anlLy-languagel, too. But the great advantage of thelanguages is that string acceptance
testing to ones can be much easier than to langubgeause the stringsto be tested are in
special formX e L; (this is an absolute assumption). Hence, if we kttwat all the strings to

be tested are from a fixed langualge then it is worth to model this problem as lan
language; but if we do not know it, we must modelsi a simple language, of course.

Consequently, the concept bof-language allows the insertion of previous knowledge
about the form of the strings to be tested — whey tvere already constructed in special form
or previously accepted by another machine — irdditional concept of language.



(Note: If the machineéM that decides ahzlanguagel is fed a stringk that is inL.,
thenM mustdecide whether or natis in L, anyway returning correct answerxo=? L; on
the other hand, iM is fed any string that is not i, it may do whatever, returning anything,
evenincorrectanswer tX €? L [X*-languagel,, in this case], or even not halting at all.)

For instance, the language™{0 | n > 0} over {0, 1} is not regular, but verifyahif L,
={0"1" | n > 0}U {1"0" | n > 0O}, for example, then tHe,-languagel.; = {0"1" | n > O} is
regular and can be decided by the NMA= ({qo, 1, 02}, {0, 1}, 8, qo, {g2}), whered(qo, 0) =

{92}, 8(0o, 1) = {qu}, (g1, 0) = B,8(qu, 1) = B,8(g2, 0) = {02}, (g2, 1) = {q}, and there are
not e-moves.

Verify that this NFAM recognizes the languade= 0{0, 1}* and {0"1" | n > 0} =
0{0, 1}* N ({0"" | n > 0}U {1"0" | n > 0}). In fact, this is not coincidence:

Theorem 3.1.1f a machineM (DFA, NFA, PDA, DTM, NTM, etc.) recognizes a
languagd., thenM recognizes anlz-languagd.1 =L N L.

Proof. Suppose that a stringe Lz-languagd_1 was accepted by a machikk Then,
X € Lz (this is an absolute assumption: All the stringbéatested must be member frdu)
and X e L (the language thdil recognizes, regardless of the special fornXKpfwhich
implies thatx € L N Lz on the other hand, ¥ € L N Lz, thenX will be accepted b,
becausex € L; (X can be tested) and € L (X will be accepted by definition of string
acceptance testing to languages), which impliesttiee_.-language recognized byl L1 =
LNL.O

See, thus, the proposed fix to the traditional frrdefinition for the class RP
(Randomized Polynomial Timé&¥!:

Definition 3.5. Let L be anlLzlanguage recognized by an NTM (nondeterministic
TM) M. L € RPif and only if the following two conditions are &died:

1. M acceptsx € Lz if and only if the number of the accepting poly4im
computation paths on input is at least some nonzero constant fractgpn
(independent ofi|) of all the computation paths.

2. Whenx € Lz andx ¢ L, all the computation paths & on inputx halt within
polynomial time into non-accepting state.

Note: When M is formalized as a probabilistic polynomial-timeTM, the
probabilities from its behavior are: in (1), Bt acceptsx] = g (M halting within
polynomial time into accepting state) andMrfejectsx] = 1 — q (eitherM halting
into non-accepting state or not halting); and i @M acceptsx] = 0 and PrM
rejectsx] = 1 (M halting within polynomial time into non-acceptistate).

See that the class NP, on the other hand, needs amd accepting poly-time
computation path (since only one suffices, whegre this casas not constant independent of
||, but decreases exponentially on it), which makedact that RP is a subset of NP obvious.
In addition, the class P needs that the fractioovalis 1 (since there is only one path in
deterministic computations), which does evident RR is also a superset of P. Note, yet, that



— asX e Lz (this is an absolute assumption, by Def. 3.4) -daeot need to describe what
languagéd._; is allowed here.

Thus, ifx € Lz, x € L and we runM on inputx choosing uniformly at random a
computation path for enough large numberf times, therM accepts< with probabilityp so
close tol as we want it (withp = 1 — (1 — (), wherer =logi—«(1 — p) does not depend dr|
(sincep andqg do not do), which is stronger than the pply(upper-bounded by Chernoff
Bound!*4, applicable, for example, to class BPP). On themohand, ik € Lz, x ¢ L and we
run M on inputx, thenM rejectsx with probability equal to 1, definitely.

Verify that whenlL; = X* and all the computation pathsMfrun within old traditional
polynomial time, the formal definition above is @glent to the traditional one for the class
RP — a set of mere languages —, which implies thiatdhe is just a particular case of the
proposed fixed definition. Consequently, we can @atme traditional clas®P as class
Traditional -RP (or, shortly,TRP), where the mathematical truths on the traditiatassRP
continue holding in. Alternatively, we could cdllet true clas®P defined above — an actual
set of computationalecision problems, dc-languages — as cla84aj2/3-RP (or, shortly,
MRP), for example, but this naming method would beistake: A subset would have the
name of the set and the set would have a derivext rd the subset, which is hard to explain,
confuse and damages the clearness of the notatiensame happens with the cl&sim Def.
3.6.

Proposition 3.1.Maj2/3-XG-SAT is in class RP.

Proof. Givenn and a restricted type X progrénthe question “DoeS return a value
1 for at least 2"Y3] inputs of lengtm?” can be decided in nondeterministic polynomialeti
(time NP(n): as time P(n), using nondeterminisnm¢e can be constructed a universal NTM
that simply simulates the running 8fand tests it for anfy2"/31 possible inputs of length at
the same time (“on parallel”) and verifies in tilR@(n) the returns: If they a@for all the
inputs, then the NTM will answer “No” after the ahmsion of the last computation path
(branch); on the other hand, if at least one retsiinthen the NTM will answer “Yes” at the
end of the first path that returdsregardless of whether the other paths are yetimgnOne
and only one of these two occurrences must happgmeé NP(n), by Def. 2.1.

Finally, as the number of the accepting poly-tineenputation paths of this NTM on
input w that it is in Maj2/3-XG-SAT is at least 2/3 of glbssible ones, and there is no
accepting path on input that it is not in it, thislanguage is in RP, with the constant fraction
q=2/3.00

Note that although the poly-time T(n) ©(n') that all non-accepting and at least
[2"*1/3] accepting computation paths spend is a differaynpmial for each inpuw,
Maj2/3-XG-SAT is a single problem (it is false thaty recursive decision problem is poly
time reducible to it, since T(n) is not previouBked for all S, but it is fixed for every one, by
Def. 2.1 — See theote 1below, for details), wheredoes not depend am even though it
does onw. Consequently, the accepting computation patheally poly-time one, by Def.
3.7, and the proof above is wholly correct: MajXI3-SAT is in RP, undoubtedly.

See that Maj2/3-XG-SAT has strings of the falfis, wheresis a DTM simulating a
restricted X progran$ that accepts within polynomial time some strindesfgthn (returning
1 for at least 2/3 of alh-bit inputs). Notice that we do NOT need to chedkethherS is a
restricted X program, by Def. 3.4.



(Note 1 Suppose that someone says that the Maj2/3-XG-SAt in RP, since its
complexity class is really undefined, and it can toe example, EEXP-Hard (for double
exponential time), reasoning as below:

“Let L be an EEXP probleniM be the deterministic Turing Machine that sol\em
time t(n) = 2*PoYM} Then we can redudeto Maj2/3-XG-SAT as follows: Given an inpxt
for the problenl, we construct a prograBithat ignores its input and simulaféson inputx.
The promise is satisfied by the constant polynomi@’) = t(Jx|), and clearlyS(1) is an
instance of Maj2/3-XG-SAT if and only ¥ accept.”

Fortunately, constructions like above cannot digprthat Maj2/3-XG-SAT is in RP,
since they do not take into account that time Rgnjot previously fixed for all possible
programsS, but it is fixed for every one, as stated in D&fl — hence, as??*°V(X} is not
upper bounded by any fixed poly(n), that progr@ns not a restricted type X program, and
clearly §,1) is NOT an instance of the Maj2/3-XG-SAT.

Finally, see also that the functiof"®VX)} = t(|x|) is not constant, but depends on |x|.
However, ifx is fixed into that TMM simulated byS, then this function is a constant (and
then M halts onx within only O(1) steps, sincéMl and x are fixed independent af);
nonetheless, in this cadd, does not solvé, of course, and then the disproof above fails.)

(Note 2 Suppose, yet, that anyone else says that the/BAX@-SAT is not in RP,
since Proposition 3.1 is wrong, as long as eitleepoly-time TM can simulate a universal
TM, or it — about the universal NTM that simulatee running ofS — does not consider the
running time of this simulation, which could be deterministic non-polynomial.

Fortunately yet, these refutations of Propositioh &e equivocated, since a program
S is always restricted (hence, it is NOT a univerBisl), and the nondeterministic running

time of the simulation of the progra® (encoded intaX) running for anyl 231 possible
inputs of lengthn at the same time IS necessarily (must be) nondetestic polynomial,
sincetime P(n)is a time-constructible function (for each fix8d by Def. 2.1.

See, however, this interesting review:

“— The author proposes that Maj2/3-XG-SAT is inofpise-)NP but not in
(promise-)P. He is right about the second part,forrect about the first part: Maj2/3-XG-
SAT is unconditionally not in promise-NP. He givesimple but fallacious argument that
Maj2/3-XG-SAT is in promise-NP on p. 8. In noteo8 p. 8 he anticipates but rejects a
counterargument, but he is wrong and this courgaraent is essentially correct.

The reason is as follows: for any Turing machivieand positive integet, we can
form a machinévk that output® on all inputs except those of lendthon which it behaves
like M. If M always halts anti’s behavior depends solely on its input length (ted latter
restrictionsemi-blindnegs thenM is always a restricted type-X machine.

It is known there exists a unary languaginat is decidable, yet it is not in EXPTIME,
hence not in NP. There issemi-blindmachineM that decided. correctly on each input
having the formi~"t But if Maj2/3-XG-SAT were in promise-NP, then weuld solvel in
NP: given inputx of form x = 1, we decide whethetis in L by running the presumed NP
verifier on the inputNk, 1), which obeys the promise. ftfis not of form1”t then we can
rejectx.)”



Verify that that conclusion is not true: In ordertty to decide that languagein NP,
as proposed above, we must run the NP verifiehenrputs of form N, 1), not (M, 1),
since to solve whethevl acceptsi™t is quite different from do it abo:, for M is not the
same thing neither has the same running time coatplas all the machinelli, M2, Ms, ...
taken into account as a [countably infinite] sdte Tunning time of all thoskl: is only O(1),
sincet is a fixed constant intd;, independent of (|input|), whileL(M) is not even in
EXPTIME (henceM is not a restricted type-X machine, at all), whioiplies, fortunately,
that the inputi, 1) does not obey the promise in Def. 2.1, and theannot be decided in
NP as proposed by that smart reviewer, and thedigipeoof above fails too.

See, also, another interesting and similar review:

“~ Let L be any computable language, encoded in unaryMaaddeterministic TM
that solved.. The program S =,Sakes its inpuy, and compare its length 1o If |y| = |X],
then S(y) simulateM on inputx, and, ifM(x) accepts, S(y) accepts. Otherwise, S(y) rejects.
If |y|] is any other value, S(y) rejects.

Clearly, this S runs in linear time, since all @shto do is count the length ofgxcept
when |y| = |x|, but this is only finitely many egtiens, and hence doesn't change the
asymptotic running time of S. To reduteto Maj2/3-XG-SAT: mapx to the pair (g

INIXI.”

Verify that that conclusion is not true too: By meaf the same reasoning above, we
could prove that that languagiewould be in NP, sincex&nd its input may be mapped to a
Boolean expression in deterministic polynomial ti(fee the running time of ,Sis really only
a fixed constant), and then this contradiction shtvat this other disproof fails too.)

In fact, all complexity classes can be generalizét the concept ok ~language like
this new definition proposed for the cldas

Definition 3.6. LetL be anL-languagelL e P if and only if for allX € Lz, X €e? L is
decidable by a poly-time DTM. Be careful with thegs: For example, all-languagesL;
are trivially in P (wherelL; can beanylanguage, even non-Turing-recognizable ones), lwhic
does NOT mean that dinguaged_; (X*-languages) are iR, noticeably.

Notice that the proper definition @blynomial-time computatiors generalized here,
without losing its more important characteristia Be understood loosely as “feasible in
practice”, where the critique in [25] is not applite:

Definition 3.7: Poly-time computation. A computation is said to be polynomial-time
if its running time T(n) =O(nX), where k =O(1), even thak depends some way on input. (n =
linput|.)

Into the old traditional definitiork must be a fixed constant (that does not depend on
n, obviously), but this stronger restriction is messential to the vital matter: To maintain the
character of vaguely practicable for determinigidtynomial-time computations. In Maj2/3-
XG-SAT, k depends on thg encoded intawv, but it is inO(1), since that even th&tcannot
be computed! neither is given, it is a fixed constant for edtted S, by Def. 2.1.
Furthermore, the traditional definition of polyn@hitime computations asserts a hidden
assumptionk must bea priori a known and given fixed constant, as revealed in Section
3.4.1.1in [13].




See that if T(n) 20(2°°Y™), for example, then T(n) ©(n), wherek (poly(n) log 2)
is not inO(1), evidently, and is upper unbounded (for nonstant poly(n), of course): hence,
in this case T(n) is not polynomial at all. The sahappens witff(n) = O(N'°Y M. If T(n) =
O(n"), wherek is, for example, the [arbitrary] position of thest 1 inw (or 1, ifw = 07), then
k is not inO(1) too, for those possible positions can be frota flv] =n, hence in the extreme
case T(n) =O(n"). On the other hand, if T(n) ©(n°™), but now g(n) is upper bounded by a
finite positive constarit, that is lim-g(n) <k, then T(n) #(n*), whence it is polynomial.

Some experts are asserting: “— The Maj2/3-XG-SAThas in RP (in the author's
terms): the polynomial\n"CANNOT depend on the input.” However, this asseriis false,
being true only for the old traditional definitiaf poly-time computation, since that in the
new definition (Def. 3.7), the polynomial CAN detely depend on the input — as long as
thatk is in O(1). Think: This is just a matter of Math objecffid#ion, not of mathematical
error or correctness, at all. We are not obligatetbllow obsolete definitions only because
they are established, unless the Science is fidighredead). See Section 8.

Very important Verify that these new definitions of the clas®eand RP are simply
good generalizations of the old traditional onesyy Araditional P or RP problem IS too,
respectively, in the new class P or RP defined alfeven though the converse is in general
false, since these new generalized classes ac#yslairger than the traditional ones), and any
superpolynomial deterministic or randomized problsmNOT in the new class P or RP,
respectively, which proves that these generalinatare consistent and smooth.

3.3.2 L-languages and Promise Problems

An Lzlanguagel can be considered agppeomise problenj], as introduced by Alan
L. Selman [Information and Computation, Vol. 7&us 2, (1988), pp. 87-98] and defined in
[9], where thepromise ([Tves U [Ino) = Lz [Ives = L, [Ino = Lz = L, and its restricted
alphabet {0, 1} is generalized to any finite alpagb. Nonetheless, notice that the concepts,
notation, generality, power and applicability oéth-languagesare clearer, richer, simpler,
conciser, more elegant, aesthetic and strongerahes of thg@romise problems

4. Demonstration that the Maj2/3-XG-SAT is not inP
Theorem 4.1.P+# RP.

Proof. As demonstrated in Sections 3.3.1, any instandbeoMaj2/3-XG-SAT can be
recognized in nondeterministic polynomial time amd randomized polynomial time.
However, can it be recognized in deterministic polyial time?

By hypothesis, consider that it can: In this camsast exist a DTMQ that — given a
positive integern and a restricted type X progra8 into w — answers correctly within
polynomial time the question “Do&return a valud for at least 2"%/3] inputs of lengtm?”
(If w is in Maj2/3-XG-SAT, thenQ(w) = “Yes”, else “No”). Note: all the inputs for the
programsS in this Section are of length

Proposition 4.1.The DTMQ is, in fact, a real computer program. Althougmiay
work entirely in a different way from someone wowddpect from the method that the
Maj2/3-XG-SAT was definedQ cannot be a magical or dream machine, since it imign
actual machine.
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So, letW: X* X L; — N be a function with a DTM and a well-formed inpat ft as
arguments, where W (Q, w) = m (Q can simulate the running & into w and test some
inputs forSin such a simulation — considered here a stepdyy{srocess runnin§ into Q),
thenm is the number of inputs f@ simulated byQ in this process: 8 m < 2",

Note: It does not matter for this proof wheth&fris a computable function or not; and
if X is not a DTM or is not interested in the Maj2/3-8AT problem, thenV(X, w) is
defined as 0.

Thus, in order to answer the question, there armmacles:Q can act into only four
possible ways (whema = W(Q, w)):

1. Q simulates the running &for:

i. [2"3]inputs or morel /3] <m < 20;

ii. All the inputs from an arbitrary nonempty propebset of all them with less
thanl 2"/3|inputs (0 <m <[2V31); or

iii. Only one input (or all from a nonempty proper sulidfeall them with less
than[ 23] inputs) previously computed whose return decidiesguestion
(m =d <[2v3]).

2. Q does not simulate the running®t all (m = 0).

Proof. These ways are exhaustive: Eitizssimulates the running & or not; and, if
Q simulates the running @&, then it can test on i2"/3] inputs or more (1.i); arbitrarily less
than these ones (1.ii); or just one (or all fromc@empty proper subset of all them with less
than[ 2"/3] inputs) that was anyway previously computed whesern decides the question
(1.ii). Unfortunately, there are no more altermasi besides that ones. (Note: Into ways (1.ii)
and (1.iii), m must be polynomial im in order toQ can decide the Maj2/3-XG-SAT in
deterministic polynomial time, of course.)

As well, the running time of a universal NTM thacttles in time NP(n) the Maj2/3-
XG-SAT — as in the proof of Proposition 3.1 — cano® upper bounded by any fixed poly(n).
Moreover, a prograns does not necessarily halt for all its possibleutsp Furthermore, the
time P(n) in Def. 2.1 cannot be upper bounded by faed poly(n), too. Thus, in general,
cannot exist any fixed poly(n) number of TM configtions that represents the entire
processing of.

Additionally, as to find the input whose return wiss the question and simulate the
running of S only for this input is impossible (see in Way ilbelow), the particular fixed
running time P(n) of a specific restricted type dgram cannot be computed in any fixed
poly(n) upper-bounded number of deterministic cotaponal steps.

Hence, an instance of the Maj2/3-XG-SAT cannotdzkiced within polynomial time
into another one of a P(n)-time decidable probleetause the reducer machine must run
within polynomial time in this case, but it canmoeviously know or compute what upper
bounds that time P(n), BBroposition 3.2 in [13]3

Suppose that someone claims, with the followingiargnt, that the B RP proof of
mine fails:

“— The author assumes that the 4 ways mentionedhereonly way to solve the
problem. Why can't the DTIND decide the question some other way?”

11



The answer is not complicate@ cannot decide the question by some other way
because there is no another possible way to déeadMaj2/3-XG-SAT besides the four ones
mentioned above: These ways do not specify typectsire, form, code, nature, shape or kind
of computation, neither structure (or lack therefilata — but just theumber (m) and kind
of inputs (arbitrary or computed) tested in eventual simulated running & —, into any
running of any DTM that tries to decide the Maj2/3-XG-SAT: (12"/3] inputs or more
(23] < m < 2"); (2) arbitrary ones less tha@"/3] inputs (0 <m <[2V31); (3) computed
ones less thahm2V3] inputs M =d < [2"%3]); or (4) none (there is no simulatiBeat all)

(m = 0).

Can there be some other way? No, by a reasoningasito pigeonholesfrom
pigeonhole principleEitherQ simulatesS or not. And simulating for more than all inputs —
or for any subset with exponential number of thentkeads to exp(n) running time, as
explained in the Way 1.i; less than none go to tiegaumber of inputs, which makes no
sense in actual computations; and between thests lthe number and kind of inputs for
eventual simulated running & must be one from the four mentioned above. Coresdty
all the possible deterministic computations to dedhe Maj2/3-XG-SAT are really into one
from these four ways.

Can we create new ways to decide in determinisilgnomial time the Maj2/3-XG-
SAT combining the four ones? Unfortunately, no wake way 1.i is useless to decide in
deterministic polynomial time the question; the wlay is useless to decide in any time the
Maj2/3-XG-SAT; and the combination of the waysiland 2 results simply in the way 1.iii —
when none result from the simulation is used by order to answer the question, which is a
case treated below in the way 1.iii.

Hence, claims like above do not go to refute thisFP proof.

Note, yet, that the method utilized in this proahoot be adapted to decide whether
SAT is in P, because if a progré#ris simulating a Boolean formula withvariables, itmust
always halt for all the possible inputs, and itammg timemustbe the same for any input;
however, these additional restricted conditionsnoarbe held in general restricted type X
programs, like ones in the proofs of the Propsas#h@ 4.3 below.

Hence, to decide whether an arbitrary general ohtéstic computer program
computes determined output for determined inputidiwhs undecidable, by the Rice's
Theorem*) cannot be reduced to SAT as it does to Maj2/34S- (as demonstrated in
these proofs), and then any attempt to adapt mgpfpm solve whether SAT is in P is
condemned to fault.

See that ifSis simulating a Boolean formula withvariables, then the Rice's Theorem
cannot be applied to ti&behavior for any input, since it is restricted &tirthe possible ones.

Finally, suppose that else one tries to refuteptioef saying:

“This proof follows a common theme: Defines an R8hem with a certain structure,
argues that any algorithm that solves that probreost work in a certain way and any
algorithm that works that way must examine an erptial number of possibilities. But we
can't assume anything about how an algorithm wakkgorithms can ignore the underlying
semantic meaning of the input and focus on theasyiatpart, the bits themselves.”

As in the previous “refutation” of my proof, thesaver is also not complicated: If the
DTM Q ignores the underlying semantic meaningvaind focus on its syntactic part, the bits
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themselves, considering just a series of bits, this approach only plaQemto the Way 2,
where the proof continues to hold, naturally.

Shortly, the spirit of the proof is very simpleetiMaj2/3-XG-SAT is decidable by
brute-force search because whetBaeturnsl for at least 2/3 of all the"2ossible ones is
decidable, whereas wheth8rreturns1 for at least one from a subset with less than this
quantity (2/3 of 2= 2"*Y/3) is in general undecidable (sinBe&an even not halt for any input
from such a subset), by Def. 2.1, which does thdha other ways to decide the Maj2/3-XG-
SAT (without brute-force neither randomized searghbe absolutely hopeless.

Consequently, we can say that one of the profourglesstions in Complexity Theory
was solved by this plain ingenious characterizatibe Def. 2.1!

Be brave and see below that all these four exhaustays to decide in deterministic
polynomial time the Maj2/3-XG-SAT fail:

Way 1.i Q simulates the running & for [ 23] inputs or more[@¥3] < m <

The obvious way to implement the DTR} is to construct a universal DTM that
simulates the running @& and submits to it any2"/3] or more inputs, verifying whether it
returnsl for at least one (in a breadth-first search, toicavunning forever in a computation
path that does not halt): If all returns &ehenw is not in Maj2/3-XG-SAT; otherwise, then
itis.

Nevertheless, this brute-force method, on worse,caan decide the problem only at
the end of testing at led€2"/3|inputs, in time exp(n).

Even though the probability of answer incorrectiferathe test of only 32 inputs
(chosen uniformly at random), for example, is veeyy low: Less tha33? (independent of
input size), whers does not returd for any of these 32 inputs, and th@ndoes not answer
“Yes”, butw, very very unfortunately, is really in Maj2/3-XGAS.

Way 1.ii Q simulates the running df for all the inputs from an arbitrary
nonempty proper subset of all them with less fi238] inputs (0 <m

<[2v3):

Note that to simulate the running®bnly for a polynomial number of arbitrary inputs
(or just for a number of them less tH&¥3] ones — for instancer®® " does not work: Even
the test of 2"/3] — 2 inputs on the simulation cannot help to desitietherS returns1 for
some from the not simulated ones (in fact, thisusation cannot help to decide even whether
S simply halts for a specified input from these gnes

Moreover, even the simple question whetBehalts for at least one input from an
arbitrary nonempty proper subset of the set oftal 2 possible inputs with less thaa"/3]
ones is undecidable, of course, by Def. 2.1. (Oldss question is only decidable for a subset
with at least 2"/3]inputs: The answer is always “True”, by Def. 2.1.)

Way 1.iii Q simulates the running & only for an input (or inputs) previously
computed i = d <[ 27/3]):
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Proposition 4.2.A DTM Q cannot compute, without simulating the runningsdbr
at leas{ 23] inputs, a nonempty proper subset of ones, wheredturn fromS for one of
them decides the question, and then to simulateutheing of S only for these inputs to
decide the Maj2/3-XG-SAT.

Proof. Let a well-formed string be constructed with an arbitrary and let the
restricted type X prograrf be below, wher€ was, by the Turing-Church Thesis, translated
into a computer program where the instructioBsnulated by Q[e] := True;and
Number_of Simulated_Inputs := Number_of Simulateguts + 1;were included just
before any instruction of this program that stahe simulation ofF for any inpute
(Simulated_by Qand Number_of _Simulated_Inputare global variables of type dynamic
array or vector of Booleans values and integer thate initialized withFalsein all its
positions and (zero) respectively).

We callQ’ to this program derived froiQ. Verify that if Q runs in polynomial time,
thenQ’ also do it, of course, and the behaviors and t®fimQ’ andQ are the same.

01. F(string input)/ F is a restricted type X program, sim@é andR are supposed poly-time
/I DTMs, andF will either return only 0’s or at leas2™¥/3] 1's
02. { n :=length(input);
03. if (R(input) = “Yes”) return(0)// R returns always within polynomial time “Maybe”
04. if (R(input) = “No”) return(1);// Thus,R does not matter to the behaviorFof
/I ButQ does not know it: See its work is very hard!
05. concurrent_ifg/ only one of the returns can close the concutiresttuctions block
06. { /I below, where the two if's run concurrently
07. {if (Simulated_by QIinput]) return(0};// There will bed of these returns ...
08. {if (Number_of_Simulated_Inputs > 2”n/3) return(p);. and2"-d of ...
09. ({if (Q'(f) ="Yes”) return(0); else return(l}; ... these ones
10. }
11.}

Now, if Q does not simulate the running Bffor at least 2"/3] inputs, then it will
unavoidable answer incorrectly “No”, aftEérreturnsO for all the simulated inputs, sinée
will in this case returrl for all the non-simulated inputs (there is at 1é@8*Y3] ones, by
Proposition 4.2), because for these ones thereéb@itthance for the thircbncurrent_if (line
09) to detect at some moment the answer “No” f@mand then to returh (note that, as the
Number_of Simulated_Inputs2”n/3,the secondoncurrent_if (line 08) is irrelevant in this
case). Note tha@Q’ cannot answer “Yes”, because will always returnO for all the d
simulated inputs, by the firsbncurrent_if (line 07), and the answer fro@' is based in the
returns fromF for all the simulated inputs. See that the comstenft the global variables
Simulated_by line 07) andNumber_of Simulated_Inputdine 08) are known intd-,
becaus&)’ is concurrently running (line 09).

On the other hand, ® simulates the running d% for at leasf 23] inputs, then it
answers correctly “No”, aftdf returnsO for all simulated inputs, sindg in this case, returns
0 for all ones because the return of@lk by the first and secormbncurrent_if (since now
the Number_of Simulated_Inputs 2”n/3), when then there is no chance for the tloing to
detect the answer “No” fronQ’, and then to returd. Unfortunately,Q can, by this way,
decide the Maj2/3-XG-SAT just in time exp(n), assviieated in Way 1.i.

See that ifQ does not simulate the running $for any input at all — or if none result
from the simulation is used bY in order to answer the question —, then it wikvitably
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answer incorrectly at some moment, by diagonabmathat exists into string on the third
concurrent_if (line 09) ofF.

Finally, suppose thdD could decide whether there is diagonalization sttongf. In
this caseQQ could stay running forever, without simulating tlugning ofF (or simulating it
and no using the resul@sfrom this simulation to answer “No”) and no retungy anything at
all, which would imply that is not a well-formed string, and th€hwould not be incorrect.
Alternatively in this case&Q could attempt to decide the question either witlsmulating the
running ofS for any input at all, or simulating it for somepurts and ignoring the resul@s
from this simulation (there is no result of course), either considering therelyjust a bit
string, or engaging in more indirect reasoning abloe code of, as in the Way 2 below.

However,Q’ can in general be any arbitrary deterministic paogrand can compute
using or not the value afiput for F, besides its proper input (the strif)gHere, ifQ’(f) runs
in polynomial time either returning always “Yes'rfall values ofinput not simulated by,
or returning another result for at led?"%3] inputs, thenf is a well-formed string
(independently of the behavior Qf(f)), and there is no diagonalization into it. Consagly,
there is diagonalization into stririgf and only if Q(f) = Q’(f) independently of the value of
input.

Hence, if Q can decide whether there is diagonalization intangtf, without
simulating the running o8 for at leasf 2"/3] possible inputs, the® can decide whether the
language of a given arbitrary TND{) has a particular nontrivial propert®’(acceptd if and
only if itself (Q) does it; in other wordQ(f) = Q’(f) independently of the value @iput).
However, this problem is undecidable, by the Ridd®orem (reflect:Q’ could beany
computer program). Henc@ cannot decide it; thu®Q is condemned to fault, too: without
knowing neither computing whether there is diagma#ibn into stringf, to answer
incorrectly the question, by the diagonalizatiomad) or to simulate the running &ffor at
least 23] inputs, in time exp(n)J

Note that, in general, the Rice's Theorem can l@ieapto theS behavior for a
nonempty proper subset with at mo¥32inputs (because this behavior is arbitrary, tef.D
2.1: in this caseS can not halt for any input from this subset), tahnot do it to the totsd
behavior for a subset with more thdi32inputs (since this behavior is restricted, by.2el:
in this case, either all results frddare0 or at least one i¥).

Way 2. Q does not simulate the running®at all fm = 0):

If the running time of) depends on the one of the restricted type X pro@anto w
for some input (where % does not halt for any input, th€hdoes not halt at all, too), which
occurs wherQQ acts reducingv into instance of another problem or simulating ilvening of
S, then the use of the diagonalization method ireotd demonstrate thgt cannot decide the
problem fails, sinc&) does nohave to be as restricted 8sBut, as these running times are
independent ones in the special case treated iverew is considered either just a bit
string, or Q decides whethe6 returns1 for some input by engaging in more indirect
reasoning about the code &fwithout simulating it at all, then we can usegdiaalization in
order to demonstrate th@ cannot decide the Maj2/3-XG-SAT. E.g.Qfconverts a problem
in E without 2"'%size circuits into a PRG which fool&-size ones, for any fixed thenQ is
here.

Note that if the running time @& is anyway always greater than one of the restficte
type X programs into w for some input (where, rememberSfdoes not halt for any input,
thenQ does not halt at all, too), th&n is, maybe indirectly, simulating the running®for
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this same input or reducing the instance of the2X8aKG-SAT constructed witl$ to some
instance of another problem, of course. In gendmlieduce within polynomial time an
instance of the Maj2/3-XG-SAT is impossible, by freof of the Proposition 4.1. We will
see below that to decide the Maj2/3-XG-SAT withsimiulating the running dd— or do it in
a running time upper bounded by any fixed (or ewen-fixed) integer polynomial function
of w| — is impossible, too:

Proposition 4.3.A DTM Q cannot, without simulating the running $for any input,
decide the Maj2/3-XG-SAT problem.

Proof. Let S encoded intav be the program:

01. S(string input)

02.{

03. n:=length(input);

04. if (integer(input) > 2*n/3) {if (T(w) = “Yes"yeturn(0); else return(1); } else return(0);
05.}

WhereT is an arbitrary deterministic program. HenceQiican, without reducing or
simulating the running o8 for any input, decide the Maj2/3-XG-SAT problerhen it can
decide whether the language Dfhas a particular nontrivial property{w) !'= Q(w), since
otherwise thenQ cannot answer anything within polynomial time, dese whatever it
answers will be incorrect, by diagonalization thalds in this case, in line 08 ¢eturns0 for
all inputs less tha2”n/3 and the answer froni(w) is inverted and returned & when it
process an input greater thafn/3 See that there af@"*/3] inputs of this form. Thus, if
T(w) returns*Yes”, thenw is not in Maj2/3-XG-SAT, and vice versa). HowevérT (w) !=
Q(w) andT(w) runs in polynomial time, then there is no diag@adion into S, andQ must
decide whafl (w) returns to decide the question. That is, bef@ranswers whatever within
polynomial time, it must decide whethBfw) = Q(w), to avoid that the diagonalization above
forces it to error (reflectl can beany computer program).

Nevertheless, this problem is undecidable, by tloe'® Theorem; hence, the DT
cannot, without reducing or simulating the runnaids for any input, decide the Maj2/3-XG-
SAT.O

Observe that ifQ tries to test whether the string above is in Maj2/3-XG-SAT
(whereQ(w) can return:“Yes”; “No”; or it does not halt) simulating the maing of S for all
the possible inputs, theé®returns in time P(nd for all ones less tha®n/3 but, if T(w) =
Q(w), then the simulation of the running fhever halts and never returns any value for any
input greater tha2*n/3 by infinite regress, which implies th@ does not halt and never
answer incorrectly, even though without decidingethler T (w) = Q(w), obviously, since it
remains forever waiting the return from this sintigla for any input greater tha®“n/3
deluded without knowing that it never does. Notibat if T answers anything within
polynomial time, thenv is a well-formed string; otherwise, then it is .not

Perceive that to state th@ answers whatsoever if and onlywf is a well-formed
string does not work, because, as demonstrate@cdtiof 3.3,L (the set of all well-formed
strings) is a non-RE language, which implies fatannot decide whether is a well-formed
string in order to decide accordingly whether i @nswer anything without mistaking. That
is, in order toQ works in this case, it must assume absolutelywhiat a well-formed string,
and then this assumption implies that it is retallg, and tha@ for the inputw returns within
polynomial time incorrect answer, by the diagoreian above int (line 04).
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Proposition 4.4.A DTM Q with running time upper bounded Hyjw|), wheref is a
fixed [or even unfixed] integer polynomial functiaf |, cannot decide the Maj2/3-XG-
SAT.

Proof. Let S encoded intav be the program:

01. S(string input)

02.{

03. n :=length(input);

04. if (integer(input) > 2"n/3)
05. concurrent_ifs {

06. if (T(w) =“Yes”) return(0); else returki
07. if (Timer > W) return(1);

08. }

09.

10. else return(0);

11.}

WhereT is an arbitrary deterministic program,is an arbitrary fixed finite positive
integer,Timer counts (in another “thread” or “concurrent pro¢e#se running time ofS, and
the two internalif are evaluated concurrently while runs for the inpuw. Thus, as the
functionslength andinteger are poly(n)-timesS is a restricted type X program, regardless of
the behavior off. See that, a$§ returnsO for all inputs less tha@”™n/3 if T(w) answers in
running time less thajw[¥, then its answer is inverted wh&mprocess any input greater than
2”n/3 andT is forced to the error if it tries to be a deciftarMaj2/3-XG-SAT.

Therefore, ag (w) can be equal tQ(w) — (if Q andT are equivalent, for instance) —
even thoughQ cannot decide whether it is true thiaw) = Q(w), by the Rice's Theorem
(reflect: T can beany computer program) —, this implies that, for laeg@ughk (when |wl< >
f(w]), Q fails: It cannot know or compute that it cannottliis case answer correctly the
question in running time less thgw|<, by the diagonalization above. Hen@,is again
condemned to fault: To answer incorrectly the goasbefore|w|< computational steps, for
some large enough Note yet thafQ cannot adjusf(jw|) in order to it is always greater than
|w[, since this polynomial is priori unknown or not given and — Wroposition 3.2 — it
cannot be computed within deterministic polynoniiale.

Observe again that if the DTR) decides the Maj2/3-XG-SAT simulating the running
of S, thenQ cannot run in time upper bounded by any fixed poigial function ofy| (in
fact, none TM — DTM or NTM - that decides the M&82G-SAT can do it), undoubtedly,
by Def. 2.1.

Conclusion:

As demonstrated above, all the four exhaustive iplessways to decide in
deterministic polynomial time the Maj2/3-XG-SAT IfaiConsequently, there exists a
computational decision problem that can be decidedndomized polynomial time, but not
in deterministic polynomial time, which implie¥® # RP, naturally. Hence, the
derandomizatiori*® is a process that does not work in general in sag computational
world. O

For this reason, by union of the Rice's Theorera,diagonalization method and the
complexity classes P and RP, this proof is moreeautiful unification and an amazing
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synthesis between the Computability Theory anddbmputational Complexity Theory, like
the one in [13].

Lastly, someone can say that if a fixed and knggm) > time P(n) of the prograr8
into w is given (see this one is not deterministic paityet computable, by Proposition 3.2),
then the instances of the Maj2/3-XG-SAT can be ceduo Boolean formula ones by Cook-
Levin Theorem, and then if the SAT is decidablel@terministic poly-time, then the Maj2/3-
XG-SAT is too. Big idea!

This conclusion is erroneous, however, since kngvarfixed polynomiap(n) > that
time P(n) is unnecessary to decide the problem (theersal NTM in the proof of
Proposition 3.1 and the universal DTM in Way l.cide the Maj2/3-XG-SAT without
knowing this information (or without such an inputjaturally), proving that randomized
computation is fundamentally much more faster (etvemmugh essentially approximate) than
deterministic computation, and that the brute-foocaandomized search are unfortunately
unavoidable in the real-world computations (I'm yweorry): To verify a correct answer is
definitely very easier than find it, naturally.

4.1 Running time of the functions into programs
About running in time P(n) and time greater than)Pigt the function be:

01.Poly_Function(string input)

02.{

03. inti, counter := 0, n := length(input);

04. fori:=1to n"10 { counter := counter + 1//}poly(n) upper bounded running time
05. if (counter > 100) return(1); else return(0);

06.}

The function above evaluated at stringut is just a number, naturally. But we can
decide that its running time is poly(n) upper boeshdvheren = jnput. We don't need a TM
to decide it. On the other hand, let the functien b

01. SuperPoly_Function(string input)

02.{

03. inti, counter := 0, n := length(input);

04. fori:=1to 2"n { counter := counter + 1{/}exp(n) upper bounded running time
05. if (counter > 100) return(1); else return(0);

06.}

Of course, the running time of the function aboseekponential im. We know
countless functions as the ones ab&vdo use them in order to make restricted type X
programs. Constructing restricted type X prograsiagialgorithms with known running time
is human work, not TM computatidf.

4.2 Example of construction of an instance of thielaj2/3-XG-SAT
Let the restricted type X progragbe:

01. S(string input)

02.{

03. remainder := mod(integer(input), 4);// remainder on division of input (converted into
/Il integer) by 4

18



04. if (remainder < 3) return(Fun2(input));returns the value returned Byn2 and halts
05. if (remainder = 3) return(Funl(input));never halts
06.}

07.Funl(string input)

08.{

09. do {input:="“1"; } while (1 = 1);/ infinite loop
10. return(l);

11.}

12. Fun2(string input)

13.

14. inti, counter := 0, n := length(input);

15. fori:=1to n™10 { counter := counter + 1/}poly(n) upper bounded running time
16. if (counter > 0) return(1); else return(0);

17.}

Thus, we can simply convert this progr&mnto a DTMM, translate it into a binary
form s, and then construct the well-formed string= 11111110s, an instance of the Maj2/3-
XG-SAT.

Here, hence, constructing Maj2/3-XG-SAT instandesstands very clear that the
human reasoning is much more powerful than mechb@ié/1) computation.

5. Baker-Gill-Solovay Theorem and the Proof

Verify that the proof does not use the diagonalramethod (except in the justified
special cases in Section 4) and it is based allmutdifference, on worst cases, between
running times from a DTM and an NTM (probabilisiiM) that recognize thez-languaged.,
as demonstrated in Way 1.i of Section 4 comparegkegroof of Proposition 3.1.

Moreover, notice that the addition into the prooéthods of oracles to a PSPACE-
Complete languag®/ does not imply that false statemeMt:PNP" (because the proof cannot
be adapted to demonstrate th4tzPNP", since a DTMQ with an oracle taV could simulate
any NTM with the same oracle using only a poly(ogatity of space, in an adapted Way 1.i,
which would otherwise prove that'® NPY).

These facts imply that the Baker-Gill-Solovay Thexorof inseparability of the classes
P and NP (hence, P and RP) by oracle-invariant mdstftechniques that are conserved under
the addition of oracles, like the pure diagonal@aimethod withoutlgebraic oracld®) does
not refute this P- RP proof. In other words, my proof technique doetselativize.

6. Razborov-Rudich Theorem and the Proof

SAT's weakness The proof does not try to prove any lower boundsthe circuit
complexity of a Boolean function, because it does tny to solve the still open question
whether SAT is in P, since to proveARP it was not necessary to solve the SAT question
(for the proof, different from the wrong conclusion[3, 6], it is irrelevant whether SAT is in
P), whereas it was enough to prove that Maj2/3-X3-% in RP but not in P: Thus, the
Razborov-Rudich Theorem of the Natural Proofs dustsrefute this proof. In other words,
my proof technique does neaturalizel”.
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7. Related Work, Aaronson-Wigderson Theorem and té& Proof

There is no relevant related work on the goal tdlyesolve the P versus NP question.
From important papers upon the matter, there alyesmme “negative” results, like the ones
referred to in Sections 5 and 6 and, more recealyan extension of thelativization in
Section 5, the proof that techniques that are gordeunder the addition of an oracle and a
low-degree extension of it over a finite field ang cannot work on this question too, by the
concept ofalgebrization explained in [8].

Remember, however, that my proof does not use uhe giagonalization method (as
referred to in Section 5), but it exploits propestiof computation that are specific to real
world computers, and then this new barrier is radidvto refute it, too.

8. Expert Advice & Academic Honesty

A reviewer, referring to the technical report irv]lhas said “— It is disconcerting to
see how the present author continues to ignorereageice. His title borders on, and perhaps
transgresses, academic honesty. Papers with saobigse claims should only be considered
after an endorsement by an expert.”

The heart of my paper is just challenging someiticathl definitions on TCS field,
essentially the need of polynomial uniformity or tikefinitions of the complexity classes P
and RP. However, that technical report says, fstaimce: “— As ... Definition 3.5 of his paper
... heeds to before the universal quantificatiorxdix a polynomial bounding the length of
the certificates, we from here on assume that éiimition is viewed as being modified to do
that ...”

So, as my proposed new definitions are so distartatlat expert advice, it has very

low value in order to evaluate my proof, thus igngrit is not really academic dishonesty at
all, but only logical consequence of that challengen enhancing those definitions.

9. Freedom & Mathematics

“_ The essence of Mathematics is FreeddhfGeorg Cantor?!
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