P £ NP Proof

André Luiz Barbosa
http://www.andrebarbosa.eti.br
Non-commercial projects: SimuPLC — PLC Simulatot@E — Electric Commands Language

Abstract This paper demonstrates thatZPNP. The way was to generalize the traditional
definitions of the classes P and NP, to constructatificial problem (a generalization to
SAT: The XG-SAT, much more difficult than the foyrard then to demonstrate that it is in
NP but not in P (where the classes P and NP_aregdined and called too simply P and NP
in this paper, and then it is explained why thalitianal classes P and NP should be fixed
and replaced by these generalized ones into Th&fad@pmputer Science). The demonstration
consists of:

Definition of Restricted Type X Program

Definition of the Extended General Problem of Safislity of a Boolean
Formula — XG-SAT

Generalization to classes P and NP

Demonstration that the XG-SAT is in NP

Demonstration that the XG-SAT is not in P

Demonstration that the Baker-Gill-Solovay Theorevaginot refute the proof
Demonstration that the Razborov-Rudich Theorem doegefute the proof
Demonstration that the Aaronson-Wigderson Theorees dhot refute the proof

N

NGO AW

The paper demonstrates three new revolutionarysidaahe foundations of Computational
Complexity Theory, against the established theothé area:

1. Language Incompleteness: There are computationak® problems that are
not languages (cannot be modeled as string acceptsesting to languages);

2. NP-Completeness Incompleteness: The Cook-Levinrdineand theconcept of
NP-Completeness are false, whence it cannot in rgeriee applied on an
instance of the XG-SAT to reduce it to one of tE; &nd

3. SAT's weakness: The complexity class of the SAbenumes not decide P versus
NP question (if SAT is not in P then MAP; on the other hand, SAT in P doesn't
imply NP = P).

The objective of the paper is just help the conityidReorists about their main question: If |
am right, then the P versus NP Clay Mathematicgitine Prize must be canceled and
replaced by the correct problem intended by th8mSAT in P?"

Mathematics Subject Classification (2010). Prim@8®15; Secondary 68Q17.

Keywords. P, NP, Computational Complexity, Formahfjuages, Automata Theory.

Contents
1 Introduction 02
2 Definition of Restricted Type X Program 03

3 Definition of the Extended General Problem of S#sfiability — XG-SAT 04
3.1 Definition of well-formed string 05

3.2 Definition of the XG-SAT as well-formed strimagceptance testing to a languaged5
3.3 Class of the languagieand class of the,-languagd. 05

3.3.1 More general definitions fdP and P and definition fdr,-language 06

3.3.2 Anew NP genealogy 10

3.3.3,-languages and Promise Problems 11
3.4 More general definition for Computational DémisProblem 12

3.4.1 The falseness of the Cook-Levin Taeor 12

3.4.1.1 How can a Theorem be false? 12

4 Old demonstration that the XG-SAT isin NP 12
4.1 The SAT as particular case of the XG-SAT 13

5 Demonstration that the XG-SAT is notin P 14
5.1 Running time of the functions into programg 2
5.2 Example of construction of an instance of tl&SAT 22

6 Baker-Gill-Solovay Theorem and the Proof 22

7 Razborov-Rudich Theorem and the Proof 23

8 Related Work, Aaronson-Wigderson Theorem and th@&roof 23
9 Expert Advice & Academic Honesty 23

10 Freedom & Mathematics 23

11 References 24

1. Introduction

| am a very ambitious person: | have restated therBus NP question on my own
terms, and this fact is confused with a supposekid@rigor in the paper. But this restating is
not arbitrary or nonsense thing. | have not invérstenew one or distorted the problem: | have
just generalized it in order to hold alomputational decisiorproblems that can be
constructed in the real world — the set of théanguages-, not only the set of tHanguages
a small proper subset of the former, as statecatiéh 3.3.1.

| have succeeded where better Math warriors inatiea failed before me because |
have seen that the Complexity Theory was incomptetatinglanguagesas if they would
represent all theomputational decisioproblems Then, to solve the problem, | simply have
generalized the theory in order to really includ®iit all the possibléecisionproblemsthat
can be decided by computers, not onlyl#mguages(See Section 3.4.)

Hence, as Mathematics loves generalizations (dlmeeoncepts, notation, generality,
power and applicability of the more general mathiabhconstructs are clearer and stronger
than of the less general ones), | think | shouldb®considered so crank or crackpot by this
“heresy”. Here, in its generalized form, the profdast question in Computational
Complexity Theory is settled — and, in additionywnand marvelous paths for original and
relevant researches are glanced; like the genatializ in these terms of all Computation
Theory (we can call iThe Barbosa’s PrograjnThis Program in fact, was already started in
[13], with aP # RP proof (leading tdP # BPP, P # ZPP, and other great related results), in
[19], with anNP < P/poly proof(leading toNEXP « P/poly, NEXP# MA, NEXP+ BPP, and
other great related results), and in [15], with thender and astoundingly (wrong,

2

unfortunately) conclusion that this Proof on my owrms leads t® # NP on traditional ones
(where theuniformity polynomial time bounds blindneesthe technical report in [15] makes
the errors in all its main conclusions, oblitergtthe fact that th&XG-SATis a single problem,
even though its polynomial time bound is netiform — see Def. 3.7, where this wide
misconception is fixed). So, | so hope that the @otar Science community is ready to this
stunning inflection point, originating deeper urstanding on machine-based computation.

(Note: This paper of mine has a little non-technical oments, and its writing style is
manifestly unusual, written in first person singutumber at some places, which is not
expected at all in technical works. But it is nesedeat | just do it in this way. | claim huge
breakthroughs: If I am right, enormous stones wvall deeply into Science of Computation,
whence this little paper can either be my etermnahihiation, or the glory of independent and
fearless thinking, inspiring everlastingly the ngenerations of the Science thinkers. Thus,
appreciating your precious time, | beg for your ayeand for your [unconventional] reading.)

Accordingly, in Sections 2 and 3 thestricted type X programand theXG-SAT
problem are formally defined, and some notes areidled in order to avoid the traps in these
definitions. In order to define thEG-SAT computationaldecision problem and poly-time
DTM are redefined in more general form, and then@ook-Levin Theorem is disproved. So,
it is proved that theXG-SATis in NP, with concepts of poly-timeerifier and certificate of
membershipIn Section 4, this demonstration is repeated whih old kind, using decider
poly-time NTM. Then, in Section 5 it is proved thhts problem is not in P (therefor,#
NP, naturally), by demonstrating that it is impossilthat any poly-time deterministic
computation solves theG-SAT

In this proof, nothing is assumed about type, $tmg; form, code, nature, shape or
kind of computation, neither structure (nor laclerdof) of data, eventually used into any
DTM that tries to decide the problem in polynomimhe. Otherwise, my proof exploits
properties of computation that are specific to reafld computers (withoudracles, infinite
TMs and other supernatural devices). In Sections &nd 8, it is demonstrated that the
theoretical barriers against possible attempt®iveshe P vs. NP question are not applicable
to refute my proof. Finally, in Sections 8 and @rthare some comments about related work
(or lack thereof) to really solve this questiond aeferences, respectively.

Shortly, in order for this B NP proof of mine be accepted, it is sufficientt ttee fact
if there is anL~language (promise problem) separating complexagses, then they are truly
distinct, and the Def. 3.7 are both accepted. @enstic revolution/paradigm shifts, see [17].

Please: If possible, read the paper without pregpin@ens. Remember that, compared
to proper Mathematics, immortality, fame, money aodon are vain things, silly concepts
and bullshits that blow in the wind. The true haygsis to an actual mathematician is to find
the light into the darkest night. (By the way, §&& 26, 27] for another amazing insights.)

2. Definition of Restricted Type X Program

Definition 2.1. Let S be a deterministic computer program, iebe a finite positive
integer and letime P(n)be a poly(n) upper bounded number of determinstimputational
steps (where time P(n) is not previously fixed d&tirpossible programs§, but it is fixed for
every one)S is arestricted type X progrant and only if the following three conditions are
satisfied:

1. S allows as input ang-bit word (member of arbitrary lengthfrom {0, 1}").

3

2. TheS behavior must be for each input one of the follayvi

I. Sreturnso;
ii. Sreturnsl; or
iii. Sdoes not halt (never returns any value).

3. The totalS behavior must be for eachone of the following:

i. Sreturns in time P(n) for all the 2 possible inputs of lengtt; or
ii. Sreturns in time P(n) for at least one possible input of length

Note 1 The presence @ is not to be decided — see Section 3.3.1. Testimgther a
computer program is a restricted type X progranh mot be necessary to the pro8fwill be
given as an absolute assumption: It IS a restrityee X program, and this fact will NOT be
under consideration: This is not a contradictioefirdtely, since we can easily create
innumerous programs of this type and — without n#eelding about their types — produce a
myriad of instances of the XG-SAT problem with thersee Sections 5.1 and 5.2, for details.

Note 2 There is no need that the polynomial running sirmevolved in a proof must
be previously fixed in order to be defined: For rapde, what is the fixed polynomial that
upper bounds the running time of the reducer comzkin the Cook-Levin Theorem? There
is no such fixed polynomial, since this running dirdepends on the NP problem whose
instance is to be reduced to a Boolean formulatheitrunning time of this reducer is (and
must be) polynomial, it is not undefined, of coyrs¢herwise there would be no NP-
Completeness. (This insight is formalized in thd.[3e7.) Notice that it does not matter at all
that we have a different time bound for each NPbl@m, but the same time bound for each
instance of a fixed one, since for this reducer iastance from every NP problem is like just
a mereinput to a deterministic computer program: which is imt@ot here, in fact, is that that
polynomial time bound is NOWniform whereas it is — without any contestation — cosrsd
very well defined. (Anyway, see [23] for a surpnigly claim about this issue.)

Note 3 The running time of a fixedrogram (or machine} on those inputs for which
it halts is bounded by a polynomial P(n) (whichaigime-constructible function (for each
fixed S), evidently®!), hence there must be an equivalent machine (b &ged S) which
always halts, and still runs in deterministic palgmal time, of course. This, however, is not
the main point: It is unimportant really whetheert must be such an equivalent machine:
What matters for my proof, after all, is that teiguivalent machine (or program) cannot in
general be constructed within deterministic polyradrime, at all, since that polynomial P(n)
is a priori unknown or not given and — Wroposition 2.1 in [23] — it cannot be computed
within deterministic polynomial time (see the digdiproofs in [23] and in Section 5).

Note 4 Into the traditional definitions of the classear®l NP, a polynomial P(n) must
be fixed for whichever programS (in order to the XG-SAT problem (Def. 3.1) is in
traditional NP), and it is only over the class df @olynomial-time machines that such a
polynomial is not fixed. However, into the new ddiions of the classes P and NP (Defs. 3.5,
3.6 and 3.7), there is no need that there is @ fpaynomial P(n) for all possib®in order to
the XG-SAT problem is in the new class NP (Def.) 3€eeProposition 3.1). Thus, the
comparison with the Cook-Levin Theorem is hereiitegwell placed (in theote 2above).

3. Definition of the XG-SAT Problem

Definition 3.1. Let S be a restricted type X program and ebe a finite positive

4

integer. TheExtended General Problem of Satisfiability of a Baa Formula(XG-SAY is
the question “Doe$ return a valuel for at least one input of lengti?” Thus, in the XG-
SAT question, the input is the pdB,1"), clearly, wherel" is justn in unary form. Note that
the specific and fixed time P(n) related3@s NOT given at all.

Be careful with a possible confusion made about Xk&&SAT and the Bounded
Halting problem (BH), defined over triples = (M,x,1¥), whereM is a nondeterministic
machine,x is a binary stringk is an integer, anav € BH if and only if there exists a
computation ofM on inputx that halts withink steps*?: The XG-SAT is a very different
problem, since the time P(n) is not given, andgiagrams into the paikS,1") alwayshalts
for at least one input of length, but maybeS does not halt for all the other ones.
Furthermore, the XG-SAT cannot be reduced in patyabtime to BH (— See Section 4.1).
In order to understand why, verify that my XG-SADIplem is in the new [generalized] class
NP (Def. 3.5), byProposition 3.1, but it is not in that old tradital one.

3.1 Definition of well-formed string

Definition 3.2. Letw be a string from @, 1} *. w is awell-formed stringf and only if
w has the forml*0s — wherel® is a finite positive integem encoded in unary form argis
the binary representation of the DTM (deterministiaring Machine) that simulates a
restricted type X progran®. Forn = 13, a well-formed stringv would be, for instance,
1111111212111110010001011011100100101011001001010110010010110000110...1

3.2 Definition of the XG-SAT as well-formed stringacceptance testing to a
languagelL

Definition 3.3. Let L be a formal language over the alphabet {0, 1}. A well-
formed stringw € L if and only if the DTM encoded intw returnsl for at least one input of
lengthn. The XG-SAT is the well-formed string acceptanesting tol.

Note that as the size of a restricted type X pnogas constant om (|S[n) =c), the
length of the DTM that simulate€®is constant too on (Js[n) =k), and thefqw|=n+ 1 + k
Thus, time P(n) is the same as timpup(and time exp(n) is the same as time gxp(

3.3 Class of the languge L and Classof the L.-languageL

L is a nonrecursively enumerable (non-RE or nonfigirecognizable) languad®,
since it is undecidable whether or not an eventeslilt1 from a computer program occurs
within polynomial time*®, besides the undecidability even whether justaitshfor some
input 1,

(Note: The undecidability of the languagiedoes NOT contradict the proof. The XG-
SAT is not the undecidable decision problena? L, but just the decidable omeell-formed

string w €? L, as explained in Section 3.3.1, since a well-fatrs&ingw is given as an
absolute assumptiom IS well-formed string, and this fact is NOT unadensideration. See
that exactly the same kind of statement holds adlitional formal languages, where the
absolute assumption is that the strings to bedeste members frol* 1))

Language Incompleteness The computer theorists generally make a big kestan
definition of computational decisioproblem They think that ones is the same thing that
languagesas if all decision problems could be modeledtasgacceptance testing to formal
languages, like in [1, 5, 6]; however, there exisinputationaldecision problems that can

5

only be modeled as string acceptance testing-tanguagegas defined in Section 3.3.1), not
to languages, like the XG-SAT. (See Def. 3.8.)

Thus, all computer theorists generally gapblen to meanlanguagéand vice versa.
See below an excerpt of text of a preeminent Psofas the area, in [10]:

"By Savage's theorem, any PROBLEM in P has a polph@me family of circuits.
Thus, to show that a PROBLEM is outside of P it ld/@auffice to show that its circuit
complexity is superpolynomia[.The wordsPROBLEMare lowercased in the original]

However, the set of all languages is a mere prepbset of the stronger and more
powerful set of allL~languages(all the _computational decision problems), as kestiaed
below.

3.3.1 More general definitions for NP and P and definitionfor L.-language

Definition 3.4. Let L, be a language over a finite alphaldgtand letl < L.. We will
callL anLzlanguage If L; =X*, thenL is aX*-language, #rivial L-language which is the
same as languag&{-language = language). The complement ol atanguagéA is another
L-languaged = L, — A. Thus, Lz-languageis simply a generalization tanguageand a
string acceptance testing tois acomputational decision problemvhere the string to be
tested isnecessarilymember fromL.. If a languagecan be characterized asset an L
languagecan be characterized asubsetthat is to say aet into another

Observe that a string acceptance testing t® acomputational decision problerbut
L, rigorously, is not only &nguage becausé. — L, which is more restrict than simplyc
>*, which should hold ifL was only a languag€. Thus, all the computational decision
problems can be modeled as string acceptancegsstin,-languages, for to accept a string
from any determined subset®f is much more general than do it just fr&f of course.

The main point herein is that the central relevaofcie languages is originated in the
fact that they model problems, not the inverse. ddengreat part of the Theory of
Computation is about languages because of the kaistderred to in Section 3.3. When this
mistake — that it is said awistakebecause it leaves legitimate problems out of tidt
traditional definition — is fixed, the Theory of @@utation will certainly study the

generalization to language: The richer and strongecept ol z-language.

A language ovek is a subset a£*, and arlL,-language is a subset of the languhge
overX. However, as L; andL; < ¥*, thenL < X*, which implies that allL-languages
areX*-languages, or simply languages, too, naturally. lamguagd. is also arl_-language,
and anyl--languagel is also a languagk. In fact, if Ly D Lz then anyl -languagel is
anlLy-languagel, too. But the great advantage of thelanguages is that string acceptance
testing to ones can be much easier than to languhgeause the stringsto be tested are in
special formX e L; (this is an absolute assumption). Hence, if we kttwat all the strings to

be tested are from a fixed langualgg then it is worth to model this problem as lan
language; but if we do not know it, then we musteiat as a simple language, of course.

Consequently, the concept bof-language allows the insertion of previous knowledge
about the form of the strings to be tested — whegy tvere already constructed in special form
or previously accepted by another machine — irstditional concept of language.

6

(Note: If the machineéM that decides ahzlanguagel is fed a stringk that is inL.,
thenM mustdecide whether or natis in L, anyway returning correct answerxo=? L; on
the other hand, iM is fed any string that is not i, it may do whatever, returning anything,
evenincorrectanswer tX €? L [X*-languagel,, in this case], or even not halting at all.)

For instance, the language™{0 | n > 0} over {0, 1} is not regular, but verifyahif L,
={0"" | n>0}U {1"0" | n > 0}, for example, then tHe,-languagel.1 = {0"1" | n > O} is
regular and can be decided by the NMA= ({qo, 1, 02}, {0, 1}, 8, qo, {g2}), whered(qo, 0) =

{92}, 8(0o, 1) = {qu}, (g1, 0) = B,8(qu, 1) = B,8(g2, 0) = {02}, (g2, 1) = {q}, and there are
not e-moves.

Verify that this NFAM recognizes the languade= 0{0, 1}* and {0"1" | n > 0} =
0{0, 1}* N ({0"1" | n > 0}U {1"0" | n > 0}). In fact, this is not coincidence:

Theorem 3.1.1f a machineM (DFA, NFA, PDA, DTM, NTM, etc.) recognizes a
languagd., thenM recognizes anlz-languagd.1 =L N L.

Proof. Suppose that a stringe Lz-languagd_1 was accepted by a machikk Then,
X € Lz (this is an absolute assumption: All the stringbéatested must be member frdu)
and X e L (the language thdil recognizes, regardless of the special fornXKpfwhich
implies thatx € L N Lz on the other hand, ¥ € L N Lz, thenX will be accepted b,
becausex € L; (X can be tested) and € L (X will be accepted by definition of string
acceptance testing to languages), which impliesttiee_.-language recognized byl L1 =
LNL.O

See, thus, the proposed fix and generalizatiomeottaditional formal definition for
the class\P (Nondeterministic Polynomial Timéy":

Definition 3.5. Let L be anlLzlanguagel € NP if and only if there is a binary

relationR < L; X £* and a known and given finite fixed positive integesuch that the
following two conditions are satisfied:

1. ForallX e Lz, X e L < 3y e X* such thafX, y) € Rand|y| e O(|xP); and

2. The languagédr = {X#y : (X, Y) € R} overX U {#} is decidable by a poly-time
DTM.

A DTM that decided.r is called averifier for L and ay such tha(x, y) € Riis called
a certificate of membershipr witnessof X in L. Note that — aX € L; (this is an absolute
assumption, by Def. 3.4) — we do not need to desowhat languagé; is allowed here.
Hence, condition 2 does NOT require any knowledgeut how to decidd.; in order to
decide whether x#y is ibr, plainly.

Verify that whenlL; = X* and the traditional definition for poly-time DTMaere is
utilized, the formal definition above is equivaleéatthe traditional one for the clai® — a set
of mere languages —, which implies that this orjassa particular case of the proposed fixed
definition. Consequently, we can name the tradaiahassNP as clasdNP-SAT (or, shortly,
SNPor NP:), where the Cook-Levin Theorem (with the hiddesuasption referred to in [23])
and all the other mathematical truths on the ti@aaii classNP continue holding in
(replacing P # NP’ and “P = NP’ by “SAT is not in Pand “SAT is in P, respectively, etc.).

7

Alternatively, we could call the true cla$éP defined above — an actual set of
computationablecision problems, dr-languages — as claB¥-XG-SAT (or, shortly XNP),
for example, but this naming method would be a akist A subset would have the name of
the set and the set would have a derived nameedaduhset, which is hard to explain, confuse
and damages the clearness of the notation. The Isappens with the clagsin Def. 3.6.

Proposition 3.1.XG-SAT is in class NP.

Proof. Into the Def. 3.5, foL. modeling the XG-SATY = {0, 1}, L is the set of all
well-formed strings (as defined in Section 3@) 1, y is ann-bit word and(X, y) € R iff
the progrants encoded into the well-formed strixgreturns within polynomial time (poly(n),
hence poly§#Y|)) 1 for y as its input (a poly-time DTM that g#Yy) decodes and simulates
Srunning having as input is, in fact, the apeérifier for L). Hence L (XG-SAT) is in NP.OO

Note that although the deterministic polynomial giffi(n) =O(n') that the witness
predicate is decided is a different polynomialdach inpuix, XG-SAT is a single problem (it
is false that any recursive decision problem isyfimhe reducible to it, since T(n) is not
previously fixed for allS, but it is fixed for every one, by Def. 2.1 — Skenote 1below, for
details), wheré does not depend an even though it does on Consequently(x, y) €? R
is really decidable in deterministic polynomial &émby Def. 3.7, and the proof above is
wholly correct: The XG-SAT is in NP, undoubtedly.

See that XG-SAT has strings of the fortf0s, wheres is a DTM simulating a
restricted X progran$ that accepts within polynomial time some strindesfgthn (returning
1 for somen-bit input). Notice that we do NOT need to checkettterS is a restricted X
program, by Def. 3.4.

(Note 1 Suppose that someone says that the XG-SAT isimadilP, since its
complexity class is really undefined, and it can toe example, EEXP-Hard (for double
exponential time), reasoning as below:

“Let L be an EEXP probleniM be the deterministic Turing Machine that sol\em
time t(n) = 2%V} Then we can redudeto XG-SAT as follows: Given an inputfor the

problemL, we construct a progra®that ignores its input and simulat&bkon inputx. The
promise is satisfied by the constant polynomial)pgfri(|x|), and clearly],1) is an instance of
XG-SAT if and only ifM accept.”

Fortunately, constructions like above cannot digprthat XG-SAT is in NP, since
they do not take into account that time P(n) is prewiously fixed for all possible programs
S, but it is fixed for every one, as stated in D2fL — hence, as?#*°YX} js not upper
bounded by any fixed poly(n), that progr&s not a restricted type X program, and clearly
(S,1) is NOT an instance of the XG-SAT.

Finally, see also that the functiof"®VX)} = t(|x|) is not constant, but depends on |x|.
However, ifx is fixed into that TMM simulated byS, then this function is a constant (and
then M halts onx within only O(1) steps, sincéM and x are fixed independent af);
nonetheless, in this cadd, does not solvé, of course, and then the disproof above fails.)

(Note 2 Suppose, yet, that anyone else says that the XGiS not in NP, since
Proposition 3.1 is wrong, as long as either no fpiohe TM can simulate a universal TM, or it
— about theverifier for L that on(X#y) simulatesS running havingy as input — does not
consider the running time of this simulation, wheduld be non-polynomial.

8

Fortunately yet, these refutations of Propositich &e equivocated, since a program
S is always restricted (hence, it is NOT a univer§dl), and the running time of the
simulation of the prograrB (encoded intX) running havingy (a witnessof X in L) as input
IS necessarily (must be) polynomial, siticee P(n)is a time-constructible function (for each
fixed S), by Def. 2.1.

See, however, this interesting review:

“— The author proposes that XG-SAT is in (promisi&)out not in (promise-)P. He is
right about the second part, but incorrect aboaetfittst part: XG-SAT is unconditionally not
in promise-NP. He gives a simple but fallaciouguanent that XG-SAT is in promise-NP on
p. 8. In note 2 on p. 8 he anticipates but rejaatsunterargument, but he is wrong and this
counterargument is essentially correct.

The reason is as follows: for any Turing machiieand positive integet, we can
form a machinévk that output® on all inputs except those of lendthon which it behaves
like M. If M always halts anti’s behavior depends solely on its input length (ed latter
restrictionsemi-blindnegs thenM is always a restricted type-X machine.

It is known there exists a unary languagenat is decidable, yet it is not in EXPTIME,
hence not in NP. There issemi-blindmachineM that decided. correctly on each input
having the formil™t. But if XG-SAT were in promise-NP, then we coslalvel in NP: given
input x of form x = 17, we decide whethetis in L by running the presumed NP verifier on
the input M, 1), which obeys the promise. {fis not of form1”t, then we can rejeat)”

Verify that that conclusion is not true: In ordertty to decide that languagein NP,
as proposed above, we must run the NP verifiehenrputs of form NI, 1), not (M, 1),
since to solve whethevl acceptsi™t is quite different from do it abo, for M is not the
same thing neither has the same running time coatplas all the machinelli, M2, Ms, ...
taken into account as a [countably infinite] sdte Tunning time of all thoskl; is only O(1),
sincet is a fixed constant intd/;, independent of (Jinput|), whileL(M) is not even in
EXPTIME (henceM is not a restricted type-X machine, at all), whigiplies, fortunately,
that the inputi¢1, 1) does not obey the promise in Def. 2.1, and theannot be decided in
NP as proposed by that smart reviewer, and thedisipeoof above fails too.

See, also, another interesting and similar review:

“— Let L be any computable language, encoded in unaryMamaddeterministic TM
that solved.. The program Ss8akes its inpuy, and compare its length xo If |y| = |x|, then
S(y) simulatesv on inputx, and, ifM(x) accepts, S(y) accepts. Otherwise, S(y) rejetty|
is any other value, S(y) rejects.

Clearly, this S runs in linear time, since all @shto do is count the length ofgxcept
when |y| = |x|, but this is only finitely many egtiens, and hence doesn't change the
asymptotic running time of S. To reducéo XG-SAT: magx to the pair (5 1{|x|}).”

Verify that that conclusion is not true too: By meaf the same reasoning above, we
could prove that that languagewould be in NP, sincex&nd its input may be reduced to a
Boolean expression in deterministic polynomial tiffee the running time of ,Sis really only
a fixed constant), and then this contradiction shtvat this other disproof fails too.)

Note that even the languagein item 2 above is, in fact, dn-language, wherk; is
the set of all strings of the fork#y.

In fact, after all, all complexity classes can lEneralized with the concept bf~
language like this new definition proposed for the cl&ss

Definition 3.6. LetL be anL-languagelL e P if and only if for allX € Lz, X €e? L is
decidable by a poly-time DTM. Be careful with thags: For example, all;-languagesl.;
are trivially in P (wherelL; can beanylanguage, even non-Turing-recognizable ones), lwhic
does NOT mean that dinguagesl; (X*-languages) are iR, noticeably.

Notice that the proper definition deterministic polynomial-time computatimore
general here, without losing its more importantrabteristic: To be understood loosely as
“feasible in practice”, where the critique in [A8]not applicable:

Definition 3.7: Poly-time DTM. A DTM is said to be polynomial-time if its running
time T(n) =O(n), where k =O(1), even thak depends some way on input. (n = |input|.)

Into the old traditional definitionk must be a fixed constant (which is @(1),
obviously), but this stronger restriction is nos@stial to the vital matter: To maintain the
character of vaguely practicable for determiniptitynomial-time computations. In XG-SAT,
the T(n) of itsverifier is in O(n¥), wherek depends on th® encoded intav, but it is inO(1),
since even that cannot be computéd neither is given, it is a fixed constant for edisled
S, by Def. 2.1. Furthermore, the traditional defomt of poly-time DTM asserts a hidden
assumptionk must bea priori aknownandgivenfixed constant, as revealed in [23].

See that if T(n) 20(2°°Y™), for example, then T(n) ©(nX), wherek (poly(n) log 2)
is not inO(1), evidently, and is upper unbounded (for nonstant poly(n), of course): hence,
in this case T(n) is not polynomial at all. The sahappens witff(n) = O(N'°Y"). If T(n) =
O(n"), wherek is, for example, the [arbitrary] position of thest 1 inw (or 1, ifw = 07), then
k is not inO(1) too, for those possible positions can be frota flv| =n, hence in the extreme
case T(n) =O(n"). On the other hand, if T(n) ©(n°™), but now g(n) is upper bounded by a
finite positive constark, that is lim- g(n) < k, then T(n) ©O(n*), whence it is polynomial.

Some experts, as in [15], are asserting: “— TheS&3-is not in NP (in the author's
terms): The polynomial \nCANNOT depend on the input.” However, this assertis false,
being true only for the old traditional definitiarf polynomial-time DTM, since in the new
definition (Def. 3.7), the polynomial CAN definitetlepend on the input — as long as that
in O(1). Think: This is just a matter of Math objecffid&ion, not of mathematical error or
correctness, at all. We are not obligated to foltgolete definitions only because they are
established, unless the Science is finished (ai)d&ee Section 9.

Very important Verify that these new definitions of the clasfeand NP are simply
good _generalizations of the old traditional onesyAraditional P or NP problem IS too,
respectively, in the new class P or NP defined aljeven though the converse is in general
false, since these new generalized classes atdyslarger than the traditional ones), and any
superpolynomial deterministic or nondeterministiogem is NOT in the new class P or NP,
respectively, which proves that these generalinatare consistent and smooth.

3.3.2 A new NP genealogy

In fact, the traditional class NP (that we calldierNR) can be divided into two new
disjoint classes: NPA(when thatp(n) is known and given) and NRwhenp(n) is unknown or
not given), where NP= NPy U NPy and NR N NPy = @. Into traditional beliefs, NPis
considerate equal to YFand NR is considerate equal @, but these considerations take not

10

account that the class NPan be a genuine, useful and very important coxitglelass into
the development of the Computational Complexity drigewith great powerful applications
in mathematically proven unbreakable in polynontiahe public-key cryptography, for
instance. By the way, see [27].

Into more formal terms, lets see the definitionstfee two new disjoint classes that
build the traditional clasblPi:: NPy andNPu (traditional Nondeterministic Polynomial Time
when the involved polynomial time is or not giveespectively):

Definition 3.8. NR,. Let L be a language oveX. L € NPy if and only if there is a

binary relationR — £* X X* and a known and given finite fixed positive integesuch that
the following two conditions are satisfied:

1. Forallx e £*, X € L & 3y € ¥* such tha(X, y) € Rand|y| e O(]xP); and

2. The languagel: = {X#y : (X, Y) € R} over £ U {#} is decidable by a
polynomial-time DTM whose polynomial is fixed, knavand given.

Definition 3.9. NR.. Let L be a language ovet. L € NP if and only if there is a
binary relationR — £* X ¥* and a known and given finite fixed positive integesuch that

the following two conditions are satisfied:
1. Forallx e £*, X € L < 3y € £* such tha(X, y) € Rand|y| e O(|xP); and

2. The languagelr = {X#y : (X, Y) € R} over £ U {#} is decidable by a
polynomial-time DTM whose polynomial is fixed, bunknown or not given.

Definition 3.10. NR. NP = NPy U NP,.

Let's see now the definitions for the claBB.: Non-uniform Nondeterministic
Polynomial Time, as NfBbut when the involved polynomial time is NOT fixed

Definition 3.11. NR. Let L be a language ov&t. L € NP if and only if there is a

binary relationR — X* X X* and a known and given finite fixed positive integesuch that
the following two conditions are satisfied:

1. Forallx e £*, X € L < 3y € £* such tha(X, y) € Rand]|y| e O(|xP); and

2. The languagé: = {X#y : (X, ¥) € R} overX U {#} is decidable by a poly-time
DTM, as defined in Def. 3.7.

Now, the old traditional class NP (NFs clearly seen simply as a proper subset of our
new and legitimate extended class NP:(NMRP,) = NP (as defined in Def. 3.5).

As always, in all the definitions above a DTM thlacided., is called averifier for L
and ay such tha(X, y) € Ris called acertificate of membershipr witnessof X in L.

3.3.3 L-languages and Promise Problems

An L-languagel can be considered asgpeomise problenj], as introduced by Alan
L. Selman [Information and Computation, Vol. 7&us 2, (1988), pp. 87-98] and defined in
[9], where thepromise ([]Tves U []no) = Lz []ves = L, []no = Lz — L, and its restricted

11

alphabet {0, 1} is generalized to any finite alpagb. Nonetheless, notice that the concepts,

notation, generality, power and applicability oé th-languagesare clearer, richer, simpler,
conciser, more elegant, aesthetic and strongerdahes of thg@romise problems

3.4 More general definition for Computational Decsion Problem

Note yet that the definition ofomputational decision problemsed herein is also
more general, without losing its more essentiailaite: To modekll real computer-based
questions — not only a small part of them — havamg and only one answer from two
alternatives'®:

Definition 3.8: A computational decision problem any arbitraryyesor-No (True-
or-Falsg question on a finite or countably infinite setinputs (strings of any finite length
over a finite alphabeX), where these ones are necessarily member frothemdetermined
set (or consistently the set of inpofsobligatory specified forrfor which the problem returns
Yes (True)). Equivalently, decision problense completely isomorphic tb-languages of
strings, and can always be modeled as string amceptesting th.-languages.

Into the traditional definition for computationakasion problem® 8 using plain
languages, the inputs for a problem are simply flbify whereas for this more general
definition they are from any arbitrary subse®df. So, we can considertaditional problem
(languagé as aset and amore generabne [rlanguagé as asubsetf aset Hence, the set
of all languagesl(; = £*) is just a little proper subset of the set oflallanguagesl(; = any
subset o*). So, onlyoneset characterizes language, but we needsets fol_~language.

See yet that, for this generalization, the stritm$fe tested (into a string acceptance
testing to arl_z-language) are necessarily (must be) member frofwhateverl_; is), where
this fact IS an absolute assumption and IS NOT wundasideration. Verify that exactly the
same kind of statement holds to traditional fortaaguages, where the absolute assumption
is that the strings to be tested (into a stringeptance testing to a language) are always

necessarily (must be) members frévh

3.4.1 The falseness of the Cook-Levin Theorem
Theorem 3.2.The Cook-Levin Theorem (CLT) is false.

Proof. See it in [23]. There are some comments on[24.

3.4.1.1 How can a Theorem be false?

Since atheoremis an absolute mathematical truth, how can thek@@&vin Theorem
be false?

See itin [23].

4. Old demonstration that the XG-SAT is in NP

Givenn and a restricted type X progréBnthe question “DoeS return a valud. for at
least one input of length?” can be decided in nondeterministic poly-timenéi NP(n): as
time P(n), using nondeterminism), since can be tcocted a universal NTM

12

(nondeterministic TM) that simply simulates the ming of S and tests it for all 2possible
inputs of lengthn at the same time (“on parallel”) and verifies ime& NP(n) the returns: If
they are0 for all the inputs, then the NTM will answer “Nalfter the conclusion of the last
computation path (branch); on the other hand, ieast one return i%, then the NTM will
answer “Yes” at the end of the first path that mesu, regardless of whether the others are yet
running. One and only one of these two events imagpen in time NP(n), by Def. 2.1.

4.1 The SAT as patrticular case of the XG-SAT

Any Boolean formuleE with n variables can be simulated in polynomial time by a
simple restricted type X progra8i(where each bit from input represents one var)alteere
the returns frons for all 2" possible inputs of length represent the results frobn for all
assignment of truth values to the variablesgpresents-alse and 1 representsrue). For
instance, ifE has two variables and(F,F) =F, E(F,T) =F, E(T,F) =T, E(T,T) =F then
S(00) returnsD, S(01) returns), S(10) returnsl, S(11) returns0; finally, S returnsO for all
inputs of length different from.

Let S be the restricted type X program below, an examapkich a simulator:

01. S(string input)/ input is an n-bit word where each bit fromdpresents one variable from
/l a Boolean formul& with n variables.

02.{

03. string E:= “X1 A ((—X1 A X10)v —(X1 A =(x10v x11) A —x1))"; // any Boolean

formula of lengthm can be placed herein and the number of variablésan be determined

in time P(m), naturally, when@ = O(n log n)— which implies that time P(n) is the same as

time P(m).

04. return(Satisfier(E, input))/ Satisfier is a simple function that returng the

assignment of the input’s truth values to the \@ésa ofE, as above, satisfies it; otherwise it

returns 0. If the length of input is different fralhre number of variables in tlie then it

returns 0, too. Satisfier can (and must) run iretign), of course, and must not use short

circuit logic in order to its running time be thense for any input of lengt.

05.}

Thus, if there exists a Poly(n)-time decider for-$&T, then it can decide the SAT in
polynomial time (time P(n)) too: It's enough to géathe Boolean formulg to be tested into
the codeS above, to construct, settimgas the number of variables k) an instancev of the
XG-SAT with S, and to decide in time P(n) whetheis in the languagke defined in Section
3.2, which is the same &sto be satisfiable, naturally. See that, in fduts process constructs
a different restricted type X program for eachehéintE to be tested.

On the other hand, if a restricted type X prog@mturns in time P(n) or 1 for all 2
possible inputs of length (where its running time is the same for any oma&y O for all
inputs of length different from, thenS can be considered a simple simulation of a Boolean
formula withn variables, as above, which implies that 8T is just a particular case of the
XG-SAT.

Moreover, given an instance of the XG-SAT constdavith a prograns that returns
in time P(n)0 or 1 for all 2" possible inputs of lengtihand a running time (upper bounded by
a known and given poly(n), naturally) that bounks éntire running time of the NTM that
decides in time NP(n) this instance, this NTM canrbduced to a Boolean formula that
represents its entire processing, by means of tu-Cevin Theorem (Cook’s Theorer),

13

Verify that the running time of this NTM is equal & fixed value more the running
time of running the simulation @&, thatcan be determined by way of running the simulation
of S for some input of length and counting the running time in order to it retithe resul®
or 1, because if it is simulating a Boolean formulahmtvariables, then its running time is
the same for any input of length Notice that ifS is not simulating a Boolean formula, then
this way of determining its running time for sonmput — and then the running time of the
NTM that solves the instance of the XG-SAT condedcwith thisS — does not work in
general, forS, in this case, can never halt for some input&saiunning time can be different
for different inputs, even though ones of sametieng

NP-Completeness IncompletenessThus, as a restricted type X program does not
necessarily halt for all the”possible inputs of length and the running time of the universal
NTM that decides in time NP(n) any instance of ¥@&-SAT cannot be upper bounded by
any fixed poly(n) — by Def. 2.1 —, the Cook-Levihélorem cannot in general be used on an
instance of the XG-SAT to reduce it within polyn@intime to an instance of the SAT. In
fact, the SAT is very easy compared to the XG-Sad the speed of the nondeterministic
computation is much greater than we have believ€8ee Section 3.4 and [23].)

Notice that, despite the time P(n) cannot be uppended by any fixed poly(n), it is
neither vague, undefined, nor undetermined: Foh eastricted type X prograr§, there is
exactly one specific and fixed polynomial m that bounds the necessary number of
deterministic computational steps in ordeiSteeturnsO for all inputs of lengtm, or 1 for at
least one, whera is an arbitrary positive integer, but this polynalmn n is fixed, by Def.
2.1, even though it is not given at all.

The main astonishing idea that was able to sepé#natelasses P and NP: This time
P(n) depends 08, but it does not depend @) which makes all the difference and changes
forever almost anything in the Computational CompeTheory...

5. Demonstration that the XG-SAT is notin P
Theorem 5.1.P# NP.

Proof. As demonstrated in Sections 3.3.1 and 4, anynostaf the XG-SAT can be
recognized in nondeterministic polynomial time. Hower, can it be recognized in
deterministic polynomial time?

By hypothesis, consider that it can: In this camast exist a DTMQ that — given a
positive integern and a restricted type X prograBinto w — answers correctly within
polynomial time the question “Doé&kreturn a valud for at least one input of lengti®” (If
w is in XG-SAT, thenQ(w) = “Yes”, elseQ(w) = “No0”). Note: All the inputs for the program
Sin this Section are of length

Proposition 5.1. The DTMQ is, in fact, a real computer program. Althougmmiay
work entirely in a different way from someone woexpect from the method that the XG-
SAT was definedQ cannot be a magical or dream machine, since itt rnesan actual
machine.

So, letW: £* X L, — N be a function with a DTM and a well-formed inpat ft as
arguments, where W(Q, w) = m (Q can simulate the running & into w and test some
inputs forSin such a simulation — considered herein a steptéy process runnirfginto Q),
thenm is the number of inputs f@ simulated byQ in this process: 8 m < 2".

14

Note: It does not matter for this proof wheth&ris a computable function or not; and
if X is nota DTM or is not interested in the XG-SADiplem, therW (X, w) is defined as 0.

Thus, in order to answer the question, there armmacles:Q can act into only four
possible ways (whenma = W(Q, w)):

1. Q simulates the running &for:

i. All the possible inputsn = 2");

il. All the inputs from an arbitrary nonempty propebset of all them
(O<m<2Y; or

iii. Only one input (or all from a nonempty proper sulegeaall them) previously
computed whose return decides the questios @ < 27).

2. Q does not simulate the running®t all (m = 0).

Proof. These ways are exhaustive: Eitizsimulates the running & or not; and, if
Q simulates the running @&, then it can test on it all the possible inputs)(&rbitrarily less
than all ones (1.ii); or just one (or all from anemnpty proper subset of all them) that was
anyway previously computed whose return decidegythestion (1.iii). Unfortunately, there
are no more alternatives besides that ones. (Note:ways (1.ii)) and (1.iiij),n must be
polynomial inn in order toQ can decide the XG-SAT in deterministic polynontiate, of
course.)

As well, the running time of a universal NTM thacites in time NP(n) the XG-SAT
— as in Section 4 — cannot be upper bounded byfiaeg poly(n). Moreover, a progra®
does not necessarily halt for all its possible tspiurthermore, the time P(n) in Def. 2.1
cannot be upper bounded by any fixed poly(n), idws, in general, cannot exist any fixed
poly(n) number of TM configurations that represehtsentire processing &

Additionally, as to find the input whose return wiss the question and simulate the
running of S only for this input is impossible (see in Way ilbelow), the particular fixed
running time P(n) of a specific restricted type ¥ogram cannot be computed within any
fixed poly(n) upper bounded number of deterministenputational steps. Hence, an instance
of the XG-SAT cannot be reduced within polynomiaid into another one of another poly-
time decidable problem, because the reducer maahirs¢ run within polynomial time in this
case, but it cannot previously know or compute wihaper bounds that time P(n), by
Proposition 2.1 in [23]0

Suppose, however, that someone claims, with thewolg argument, that the PNP
proof of mine fails:

“~ The author assumes that the 4 ways mentionedh&reonly way to solve the
problem. Why can't the DTIND decide the question some other way?”

The answer is not complicate@ cannot decide the question by some other way
because there is no another possible way to debieleXG-SAT besides the four ones
mentioned above: These ways do not specify typegtsire, form, code, nature, shape or kind
of computation, neither structure (or lack therexfilata — but just theumber (m) and kind
of inputs (arbitrary or computed) tested in eventual simulated running & —, into any
running ofany DTM that tries to decide the XG-SAT: (1) all inpum = 2"); (2) arbitrary
ones less than all (0m < 2"); (3) computed ones less than afl € d < 2"); or (4) none (there
is no simulatings into Q at all) (n = 0).

15

Can there be some other way? No, by a reasoningasito pigeonholesfrom
pigeonhole principleEitherQ simulatesS or not. And simulating for more than all inputs —
or for any subset with exponential number of thentkeads to exp(n) running time, as
explained in the Way 1.i; less than none go to tlegaumber of inputs, which makes no
sense in actual computations; and between thests lthe number and kind of inputs for
eventual simulated running & must be one from the four mentioned above. Coresdty
all the possible deterministic computations to dedhe XG-SAT are really into one from
these four ways.

Can we create new ways to decide in deterministignomial time the XG-SAT
combining the four ones? Unfortunately, no way: Tway 1.i is useless to decide in
deterministic polynomial time the question; the way is useless to decide in any time the
XG-SAT; and the combination of the ways 1.iii ande8ults simply in the way 1.iii — when
none result from the simulation is used®@yn order to answer the question, which is a case
treated below in the way L1.iii.

Hence, claims like above do not go to refute thisNP proof.

Note, yet, that the method utilized in this proahnot be adapted to decide whether
SAT is in P, because if a progrésns simulating a Boolean formula withvariables, itmust
always halt for all the possible inputs, and itanimg timemustbe the same for any input;
however, these additional restricted conditionsnoarbe held in general restricted type X
programs, like ones in the proofs of the Propsab@ 5.3 below.

Hence, to decide whether an arbitrary general ohétéstic computer program
computes determined output for determined inputigwhs undecidable, by the Rice's
Theorem*!) cannot be reduced to SAT as it does to XG-SATd@sonstrated in these
proofs), and then any attempt to adapt my progbtee whether SAT is in P is condemned to
fault.

See that ifSis simulating a Boolean formula withvariables, then the Rice's Theorem
cannot be applied to ti&behavior for any input, since it is restricted &irthe possible ones.

Finally, suppose that else one tries to refuteptivef saying:

“This proof follows a common theme: Defines an NBlgpem with a certain structure,
argues that any algorithm that solves that probreost work in a certain way and any
algorithm that works that way must examine an egptial number of possibilities. But we
can't assume anything about how an algorithm wakkgorithms can ignore the underlying
semantic meaning of the input and focus on theasyiatpart, the bits themselves.”

As in the previous “refutation” of my proof, thesaver is also not too complicated: If
the DTMQ ignores the underlying semantic meaningvadnd focus on its syntactic part, the
bits themselves, considering just a series of bits, then this approach onlggd®) into the
Way 2 — whereQ does not simulate the running $fat all (n = 0) —, and then the proof
continues to hold, naturally.

Shortly, the spirit of the proof is very simple:&XG-SAT is decidable by brute-force
search because whether or 8atturnsl for at least one input from all thé Rossible ones is
decidable, whereas wheth8rreturnsl for at least one from a nonempty proper subset of
them is in general undecidable (sif8e&an even not halt for any input from such a proper
subset), by Def. 2.1, which does that all the othays to decide the XG-SAT (without brute-
force searching) be absolutely hopeless.

16

Consequently, we can say that the profoundest igmeist Computational Complexity
Theory was solved by this plain ingenious charadéon, the Def. 2.1!

Be brave and see below that all these four exhaustays to decide in deterministic
polynomial time the XG-SAT fail:

Way 1.i Q simulates the running &for all the possible inputsn = 27):

The obvious way to implement the DTR} is to construct a universal DTM that
simulates the running db and submits to it each one of th# @ssible inputs, verifying
whether it returnd for at least one (in a breadth-first search, toivunning forever in a
computation path that does not halt): If all retuame0, thenw is not in XG-SAT; otherwise,
then it is. Exactly one of these two events mugplkea in time NP(n), by Def. 2.1.

Nevertheless, this brute-force method, on worse,cean decide the problem only at
the end of testing all the' possible inputs, in time exp(n).

Way Lii Q simulates the running df for all the inputs from an arbitrary
nonempty proper subset of all them (fh<< 2.

Note that to simulate the running®bnly for a polynomial number of arbitrary inputs
(or just for a number of them less than all thesjide ones — for instance!®® ") does not
work: Even the test of"2- 2 inputs on the simulation cannot help to degitietherS returns
1 for some from the two not simulated ones (in félots simulation cannot help to decide
even whethe simply halts for a specified input from these twrees).

Moreover, even the simple question whetBehalts for at least one input from an
arbitrary nonempty proper subset of the set ofttal 2' possible inputs is undecidable, of
course, by Def. 2.1. (Obs.: This question is ordgidable for the set of all thé' possible
inputs: The answer is always “True'S-halts for at least one input —, by Def. 2.1.)

Way 1.iii Q simulates the running & only for an input (or inputs) previously
computedin =d < 2.

Proposition 5.2.A DTM Q cannot compute, without simulating the runningsdbr
all the 2 possible inputs, a nonempty proper subset of omksre the return frors for one
of them decides the question, and then to simukeeunning ofS only for these inputs to
decide the XG-SAT.

Proof. Let a well-formed string be constructed with an arbitrarny and let the
restricted type X progrark be below, wher€ was, by the Turing-Church Thesis, translated
into a computer program where it was included tisggructionSimulated by Q[e] := True;
just before any instruction of this program tharist the simulation oF for any inpute
(Simulated_by_ Qs a global variable of type dynamic array or vedf Booleans values that
was initialized withFalsein all its positions).

We callQ’ to this program derived froiQ. Verify that if Q runs in polynomial time,
thenQ’ also do it, of course, and the behaviors and tefdmQ’ andQ are the same.

01. F(string input)/ F is a restricted type X program, sim@é andR are supposed poly-time

/l DTMs, andF will either return only O’s or at least one 1
02. { n :=length(input);

17

03. if (R(input) = “Yes”) return(0)// R returns always within polynomial time “Maybe”
04. if (R(input) = “No”) return(1);// Thus,R does not matter to the behaviorFof

// But Q does not know it: See its work is very hard!
05. concurrent_ifg/ only one of the returns can close the concurresttuctions block

06. { /Il below, where the two if's run concurrently

07. {if (Simulated_by_ QJinput]) return(0};// There will bed of these returns ...

08. ({if (Q'(f) ="Yes”) return(0); else return(1}; ... and2"-d of these ones
09. }

10.}

Now, asd < 2", thenQ’ will unavoidable answer incorrectly “No”, aftér returnsO
for all thed simulated inputs, sinde will in this case returi for all the non-simulated inputs
(there is at least one, sinde< 2"), because for these ones there will be chancthésecond
concurrent_if (line 08) to detect at some moment the answer “Moin Q’, and then to
return 1. Note thatQ’ cannot answer “Yes”, becausewill always returnO for all thed
simulated inputs, by the firsbncurrent_if (line 07), and the answer fro@' is based in the
returns fromF for all the simulated inputs. See that the comstenft the global variable
Simulated_by (line 07) is known intd-, becaus&)’ is concurrently running (line 08).

On the other hand, d = 2", then it answers correctly “No”, aftér returnsO for all
inputs, sincer, in this case, return@ for all ones because the return of @lis by the first
concurrent_if, when then there is no chance for the secomutcurrent_if to detect the
answer “No” fromQ’, and then to returd. Unfortunately,Q can, by this way, decide the
XG-SAT just in time exp(n), as was treated in Way 1

See that ifQ does not simulate the running®for any input at alld = 0) — or if none
result from the simulation is used Iy in order to answer the question —, then it will
inevitably answer incorrectly at some moment, kggdnalization that exists into strifigon
the secondoncurrent_if of F (line 08).

Finally, suppose thaD could decide whether there is diagonalization sttongf. In
this caseQQ could stay running forever, without simulating tlugning ofF (or simulating it
and no using the resul@sfrom this simulation to answer “No0”) and no retiumgy anything at
all, which would imply that is not a well-formed string, and th€hwould not be incorrect.
Alternatively in this case&Q could attempt to decide the question either wittsimulating the
running of S for any input at alld = 0), or simulating it for some inputs and ignagrithe
resultsO from this simulation (there is no resdlt of course), either considering therelny
just a bit string, or engaging in more indirects@aing about the code & as in the Way 2
below.

However,Q’ can in general be any arbitrary deterministic paogrand can compute
using or not the value afiput for F, besides its proper input (the strif)gHere, ifQ’(f) runs
in polynomial time either returning always “Yes'rfall values ofinput not simulated by,
or returning another result for at least one, thsna well-formed string (independently of the
behavior of Q(f)), and there is no diagonalization into it. Conssgly, there is
diagonalization into stringif and only ifQ(f) = Q’ (f) independently of the value wiput.

Hence, if Q can decide whether there is diagonalization intangtf, without
simulating the running o§ for all the 2 possible inputs, the® can decide whether the
language of a given arbitrary TND{) has a particular nontrivial propertQ’(acceptd if and
only if itself (Q) does it; in other wordQ(f) = Q’(f) independently of the value @iput).
However, this problem is undecidable, by the Ridd®orem (reflect:Q’ could beany
computer program). Henc@ cannot decide it; thu€Q is condemned to fault, too: without
knowing neither computing whether there is diagma#ibn into stringf, to answer

18

incorrectly the question, by the diagonalizatiol\ad or to simulate the running Bffor all
the 2' possible inputsd = 2", in time exp(n)O

Note that, in general, the Rice's Theorem can l@ieapto theS behavior for a
nonempty proper subset of all the ossible inputs (because this behavior is arlyitriay
Def. 2.1: in this caseS can not halt for any input from this subset), bahnot do it to the
total S behavior for all ones (since this behavior isrietgd, by Def. 2.1: in this case, either
all results fromS areO or at least one i%).

Way 2. Q does not simulate the running®at all (m = 0):

If the running time of) depends on the one of the restricted type X pro@anto w
for some input (where & does not halt for any input, th€hdoes not halt at all, too), which
occurs wherQQ acts reducingv into instance of another problem or simulating rilvening of
S, then the use of the diagonalization method ireotd demonstrate thgt cannot decide the
problem fails, sinc&) does nohave to be as restricted 8sBut, as these running times are
independent ones in the special case treated iverew is considered either just a bit
string, or Q decides whethe6 returns1 for some input by engaging in more indirect
reasoning about the code &fwithout simulating it at all, then we can usegdiaalization in
order to demonstrate th@ cannot decide the XG-SAT. E.g.,@ converts a problem i&
without 2¥1%size circuits into a PRG which fool§-size ones, for any fixed thenQ is here.

Note that if the running time @& is anyway always greater than one of the restficte
type X programs into w for some input (where, rememberSfdoes not halt for any input,
thenQ does not halt at all, too), thé&nis, maybe indirectly, simulating the running®for
this same input or reducing the instance of the S&3- constructed witls to some instance
of another problem, of course. In general, to reduithin polynomial time an instance of the
XG-SAT is impossible, by the proof of the Propamsiti5.1. We will see below that to decide
the XG-SAT without simulating the running 8f— or do it in a running time upper bounded
by any fixed (or even non-fixed) integer polynonfiahction of yv| — is impossible, too:

Proposition 5.3.A DTM Q cannot, without simulating the running for any input,
decide the XG-SAT problem.

Proof. Let S encoded intav be the program:

01. S(string input)

02.{

03. n :=length(input);

04. if (integer(input) = 2*n — 1) {if (T(w) = “Yeg’return(0); else return(1); } else return(0);
05.}

WhereT is an arbitrary deterministic program. Hence) i€an, without simulating the
running of S for any input, decide the XG-SAT problem, thercén decide whether the
language ofT has a particular nontrivial property:(w) !'= Q(w), since otherwise the®
cannot answer anything within polynomial time, hesma whatever it answers will be
incorrect, by diagonalization that holds in thiseain line 04 $ returns0 for all inputs of the
form different from1", and the answer fronm(w) is inverted and returned I when it
process the input of the forti — what is the same asteger(input) = 2*°n — 1 See that there
is only one input of this form for each Thus, if T(w) returns“Yes”, thenw is not in XG-
SAT, and vice versa). However, Ti(w) != Q(w) and T(w) runs in polynomial time, then
there is no diagonalization int§, and Q must decide whafl (w) returns to decide the
question. That is, befoi® answers whatever within polynomial time, it mustide whether

19

T(w) = Q(w), to avoid that the diagonalization above fordds ierror (reflectT can beany
computer program).

Nevertheless, this problem is undecidable, by tloe'® Theorem; hence, the DT
cannot, without simulating the running $for any input, decide the XG-SATI

Observe that ifQ tries to test whether the strimgabove is in XG-SAT (wher@(w)
can return: “Yes”; “No”; or it does not halt) simulating the maing of S for all the possible
inputs, thersS returns in time P(n) for all ones of the form different frodf, but, if T(w) =
Q(w), then the simulation of the running $iever halts and never returns any value for the
input of the form1", by infinite regress, which implies th@ does not halt and never answer
incorrectly, even though without deciding whetfigw) = Q(w), obviously, since it remains
forever waiting the return from this simulation fomput of the form1", deluded without
knowing that it never does. Notice thaflifanswers anything within polynomial time, then
is a well-formed string; otherwise, then it is not.

Perceive that to state th@ answers whatsoever if and onlywf is a well-formed
string does not work, because, as demonstrate@écdtiof 3.3,L (the set of all well-formed
strings) is a non-RE language, which implies tQatannot decide whether is a well-formed
string in order to decide accordingly whether i @nswer anything without mistaking. That
is, in order toQ works in this case, it must assume absolutelywhat a well-formed string,
and then this assumption implies that it is retallg, and tha@ for the inputw returns within
polynomial time incorrect answer, by the diagoregian above int (line 04).

Proposition 5.4.A DTM Q with running time upper bounded Hyjw|), wheref is a
fixed [or even non-fixed] integer polynomial furami of jv|, cannot decide the XG-SAT.

Proof. Let S encoded intav be the program:

01. S(string input)

02.{

03. n:=length(input);

04. if (integer(input) =2"n — 1)
05. concurrent_ifs {

06. if (T(w) =“Yes”) return(0); else returki
07. if (Timer > W) return(1);

08. }

09. }

10. else return(0);

11.}

WhereT is an arbitrary deterministic program,is an arbitrary fixed finite positive
integer,Timer counts (in another “thread” or “concurrent pro¢e#se running time ofS, and
the two internalif are evaluated concurrently while runs for the inpuw. Thus, as the
functionslength andinteger are poly(n)-timesS is a restricted type X program, regardless of
the behavior off. See that, aS returns0 for all inputs of the form different frort", if T (w)
answers in running time less thiavl¢, then its answer is inverted wh&mrocess the input of
the form1", andT is forced to the error if it tries to be a decifl@r XG-SAT. Therefore, as
T(w) can be equal tQ(w) — (if Q andT are equivalent, for instance) — even tho@bannot
decide whether it is true thatw) = Q(w), by the Rice's Theorem (reflect: can beany
computer program) —, this implies that, for largeeghk (when|w[< > f(jw|), Q fails: It
cannot know or compute that it cannot in this casswer correctly the question in running
time less thafw[<, by the diagonalization above.

20

Hence,Q is again condemned to fault: To answer incorreittéy question beforpv|<
computational steps, for some large enokigNote yet thafQ cannot adjusf(jw|) in order to
it is always greater thaw|<, since this polynomial ia priori unknown or not given and — by
Proposition 2.1 in [23] — it cannot be computedhmtdeterministic polynomial timel

Observe again that if the DTK) decides the XG-SAT simulating the runningf
thenQ cannot run in time upper bounded by any fixed poigial function ofW| (in fact,
none TM — DTM or NTM — that decides the XG-SAT amnit), undoubtedly, by Def. 2.1.

Conclusion:

As demonstrated above, all the four exhaustive iplessways to decide in
deterministic polynomial time the XG-SAT fail: Catpiently, there exists a computational
decision problem that can be decided in nondetastitnpolynomial time, but not in
deterministic polynomial time, which implid® # NP, naturally, in our sad computational
world. O

For this reason, by union of the Rice's Theorema,diagonalization method and the
complexity classes P and NP, this proof is a b&duinification and an amazing synthesis
between the Computability Theory and the Computati€omplexity Theory.

Lastly, someone can say that if a fixed and knggm) > time P(n) of the prograr8
into w is given (see this one is not deterministic patyet computable, by Proposition 2.1 in
[23]), then the instances of the XG-SAT can be ceduto Boolean formula ones by Cook-
Levin Theorem, and then if the SAT is decidabled@terministic poly-time, then the XG-
SAT is too. Big idea!

This conclusion is erroneous, however, since kngvarixed polynomiap(n) > that
time P(n) is unnecessary to decide the problem (thieersal NTM in Section 4 and the
universal DTM in Way 1.i decide the XG-SAT withdutowing this information (or without
such an input), naturally), proving that nondeteristic computation is fundamentally much
more faster than deterministic computation, and tha brute-force search is unfortunately
unavoidable in the real-world computations (I'm yweorry): To verify a correct answer is
definitely very easier than find it, naturally.

5.1 Running time of the functions into programs
About running in time P(n) and time greater than)Pgt the function be:

01.Poly_Function(string input)

02.{

03. inti, counter := 0, n := length(input);

04. fori:=1to n"10 { counter := counter + 1//}poly(n) upper bounded running time
05. if (counter > 100) return(1); else return(0);

06.}

The function above evaluated at stringut is just a number, naturally. But we can
decide that its running time is poly(n) upper boeshdvheren = jnput. We don't need a TM
to decide it. On the other hand, let the functien b

01. SuperPoly_Function(string input)
02.{
03. inti, counter := 0, n := length(input);

21

04. fori:=1to 2"n { counter := counter + 1{/}exp(n) upper bounded running time
05. if (counter > 100) return(1); else return(0);
06.}

Of course, the running time of the function aboseekponential im. We know
countless functions as the ones ab&vdo use them in order to make restricted type X
programs. Constructing restricted type X prograsiagialgorithms with known running time
is human work, not TM computatidf.

5.2 Example of construction of an instance of thEG-SAT
Let the restricted type X progragbe:

01. S(string input)

02.{

03. remainder := mod(integer(input), 2);remainder on division of input (converted into
/I integer) by 2

04. if (remainder = 0) return(Fun2(input));returns the value returned Byn2 and halts

05. if (remainder = 1) return(Funl(input));never halts

06.}

07.Funl(string input) {

08. do {input:="“1"; } while (1 = 1)y/ infinite loop
09. return(l);

10.}

11. Fun2(string input) {

12. inti, counter := 0, n := length(input);

13. fori:=1to n™10 { counter := counter + 1//}poly(n) upper bounded running time
14. if (counter > 0) return(1); else return(0);

15.}

Thus, we can simply convert this progr&mnto a DTMM, translate it into a binary
form s, and then construct the well-formed striwg= 11111110s, an instance of the XG-
SAT. Here, constructing XG-SAT instances, it stamels/ clear-cut that the human reasoning
iIs much more powerful than mechanical (TM) compatat

6. Baker-Gill-Solovay Theorem and the Proof

Verify that the proof does not use the diagonalramethod (except in the justified
special cases in Section 5) and it is based allmutdifference, on worst cases, between
running times from a DTM and an NTM that recogrtizel .-languagd., as demonstrated in
Way 1.i of Section 5 compared to Section 4.

Moreover, notice that the addition into the prooéthods of oracles to a PSPACE-
Complete languag®/ does not imply that false statemeMt:PNP" (because the proof cannot
be adapted to demonstrate thdtzPNP", since a DTMQ with an oracle taV could simulate
any NTM with the same oracle using only a poly(ogatity of space, in an adapted Way 1.i,
which would otherwise prove that'® NPY).

These facts imply that the Baker-Gill-Solovay Thexorof inseparability of the classes
P and NP by oracle-invariant methods (techniquas d@he conserved under the addition of

22

oracles, like the pure diagonalization method wittadgebraic oraclé®!) does not refute this
P+ NP proof. In other words, my proof technique doetrelativizel.

7. Razborov-Rudich Theorem and the Proof

SAT's weakness The proof does not try to prove any lower boundsthe circuit
complexity of a Boolean function, because it does tny to solve the still open question
whether SAT is in P, since to proveAANP it was not necessary to solve the SAT question
(for the proof, different from the wrong conclusion[3, 6], it is irrelevant whether SAT is in
P), whereas it was enough to prove that XG-SATIBIP but not in P: Thus, the Razborov-
Rudich Theorem of the Natural Proofs does not eethis proof. In other words, my proof
technique does notaturalizel’.

8. Related Work, Aaronson-Wigderson Theorem and t& Proof

There is no relevant related work on the goal &dlyesolve the P versus NP question.
From important papers upon the matter, there alesmme “negative” results, like the ones
referred to in Sections 6 and 7 and, more recealyan extension of thelativization in
Section 6, the proof that techniques that are seadeunder the addition of an oracle and a
low-degree extension of it over a finite field ang cannot work on this question too, by the
concept ofalgebrization explained in [8].

Remember, however, that my proof does not use uhe giagonalization method (as
referred to in Section 6), but it exploits propestiof computation that are specific to real
world computers, and then this new barrier is radidvto refute it, too.

9. Expert Advice & Academic Honesty

A reviewer, referring to the technical report irb],Lhas said “— It is disconcerting to
see how the present author continues to ignorereageice. His title borders on, and perhaps
transgresses, academic honesty. Papers with saodigse claims should only be considered
after an endorsement by an expert.”

The heart of my paper is just challenging someiticathl definitions on TCS field,
essentially the need of polynomial uniformity or tikefinitions of the complexity classes P
and NP. However, that technical report says, fetaince: “— As ... Definition 3.5 of his paper
... heeds to before the universal quantificatiorxdix a polynomial bounding the length of
the certificates, we from here on assume that éiigition is viewed as being modified to do
that ...”

So, as my proposed new definitions are so distartatlat expert advice, it has very
low value in order to evaluate my proof, thus igngrit is not really academic dishonesty at
all, but only logical consequence of that challengen enhancing those definitions.

10. Freedom & Mathematics

“_ The essence of Mathematics is FreeddhfGeorg Cantor?!

23

11.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

References

J. E. Hopcroft, J. D. Ullman, and R. Motwalmtroduction to Automata Theory,
Languages and ComputatioAddison-Wesley, Reading MA, 2001.

T. H. Cormen, C. E. Leiserson, R. L. Rivestd&h SteinJntroduction to Algorithms
(Second Edition)The Mit Press, Cambridge MA, 2001.

K. J. Devlin,The Millennium Problems: The Seven Greatest UnddWathematical
Puzzles of Our Timdasic Books, New York NY, 2002.

M. Sipser,Introduction to the Theory of Computation — SecBddion, Thomson
Course Technology, Boston MA, 2006.

Adapted from the appendix of the papgriformly Hard Setdy L. Forthow and R.
Downey, unpublished, availablettp://weblog.forthow.com/media/ladner.pdf

Cook S.A., P versus NP problemunpublished, available:
http://www.claymath.org/millennium/P vs NP/Officid#roblem Description.pdf

From Wikipedia, the free encyclopedi®ydtural Proof, unpublished, available:
http://en.wikipedia.org/wiki/Natural_proof

S. Aaronson and A. Wigdersoalgebrization: A New Barrier in Complexity Thepry
Electronic Colloquium on Computational Complexieport No. 5 (2008), available:
http://eccc.hpi-web.de/eccc-reports/2008/TR0O8-08p&P. pdf

O. Goldreich,On Promise Problems (in memory of Shimon Even (P984))
unpublished, availablérttp://www.wisdom.weizmann.ac.il/~oded/PS/prpr.ps

M. Sipser, Cambridge MA 02139, Trhe History and Status of the P Versus NP
Question p. 606, unpublished, available:
http://www.seas.harvard.edu/courses/cs121/handipgsf-pvsnp.pdf

From Wikipedia, the free encyclopedi®&ite's Theorefmunpublished, available:
http://en.wikipedia.org/wiki/Rice's _theorem

O. GoldreichNotes on Levin’s Theory of Average-Case Complexityublished,
available:http://www.wisdom.weizmann.ac.il/~oded/COL/Ind.pdf

A. L. BarbosaP !'= RP Proof unpublished, available:
http://www.andrebarbosa.eti.br/P_different RP_Pr&oiy.pdf

From Wikipedia, the free encyclopedi®, Versus NP Problemunpublished, available:
http://en.wikipedia.org/wiki/P_versus_NP_problem

L. A. Hemaspaandra, K. Murray, and X. TaBgrbosa, Uniform Polynomial Time
Bounds, and Promisg$echnical Report, unpublished, available:
http://arxiv.org/abs/1106.1150

From Wikipedia, the free encyclopedi®€cision Problerfy unpublished, available:
http://en.wikipedia.org/wiki/Decision_problem

24

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

T. S. Kuhn,The Structure of Scientific Revolutiotuniversity of Chicago Press,
Chicago IL, 1962.

From StackExchange (cstheory), cc-wil\ré runtime bounds in P decidable?
(answer: no), unpublished, available:
http://cstheory.stackexchange.com/questions/50841artime-bounds-in-p-decidable-
answer-no

A. L. BarbosaNP « P/poly Proof unpublished, available:
http://www.andrebarbosa.eti.br/NP is not in P-PBhpof Eng.pdf

From Wikipedia, the free encyclopediZermelo-Fraenkel Set Thedrynpublished,
available:http://en.wikipedia.org/wiki/Zermelo-Fraenkel_séteory

From Wikipedia, the free encyclopedi&gdnstructible Functiofy unpublished,
available:http://en.wikipedia.org/wiki/Constructible function

From The Engines of Our Ingenuity, sitégisode r° 1484: GEORG CANTQRosted
by John H. Lienhard, unpublished, availathli#gp://www.uh.edu/engines/epil484.htm

A. L. BarbosaThe Cook-Levin Theorem is Falsmpublished, available:
http://www.andrebarbosa.eti.br/The Cook-Levin Tlkeoris False.pdf

From Godel’'s Lost Letter and P=NP, a personaiv of the theory of computation,

blog, public comments orFacts No One Really Chec¢kposted at July 25, 2012, by R.

J. Lipton, unpublished, availabléhttp://rjlipton.wordpress.com/2012/07/25/facts-no-
one-really-checks/#comment-22187

A. L. BarbosaWhat is the Size of the Hilbert Hotel's Computeripublished,
available:
http://www.andrebarbosa.eti.br/The Size of the é¢tilbHotel Computer.pdf

A. L. BarbosaThe Randomness Delusjampublished, available:
http://www.andrebarbosa.eti.br/The_Randomness_ ielysif

A. L. BarbosaThe Dead Cryptographers Society ProbJempublished, available:
http://arxiv.org/ftp/arxiv/papers/1501/1501.038%#.p

J. Abascal and S. Maimo@yitique of Barbosa’s “P '= NP Proof; unpublished,
available:https://arxiv.org/pdf/1711.07132.pdf

André Luiz Barbosa — Goiania - GO, Brazil — e-Mail:webmaster@andrebarbosa.eti.br~ July 2009

Site..
Blog.

....... :www.andrebarbosa.eti.br
....... : blog.andrebarbosa.eti.br

This Paper :.www.andrebarbosa.eti.br/P_different NP_Proof Emg.ht

PDF.

...... : www.andrebarbosa.eti.br/P_different NP_Proof Enfg.pd

arXiv...... . http://arxiv.org/ftp/arxiv/papers/0907/0907.3965.pd

25

