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Abstract. This paper demonstrates that NP P/poly. The way was to generalize the
traditional definitions of the classes P, P/polydaiP, to construct an artificial problem (a
generalization to SAT: The XG-Poly-SAT, much mdfeuwlt than the formerjand then to
demonstrate that it is in NP but not in P/poly (whehe classes P, P/poly and NP are
generalized and called too simply P, P/poly and iNRhis paper, and then it is explained
why the traditional classes P, P/poly and NP shob#l fixed and replaced by these
generalized ones into Theory of Computer Sciefide.demonstration consists of:

Definition of Restricted Type X Program

Definition of the Extended General Poly ProblentSatisfiability of a Boolean
Formula — XG-Poly-SAT

Generalization to classes P, P/poly and NP

Demonstration that the XG-Poly-SAT is in NP

Demonstration that the XG-Poly-SAT is not in P/poly

Demonstration that the Baker-Gill-Solovay Theorevaginot refute the proof
Demonstration that the Razborov-Rudich Theorem doesefute the proof
Demonstration that the Aaronson-Wigderson Theorees dhot refute the proof
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1. Introduction

We, following The Barbosa’s Prograrand the ideas proposed in [19], could utilize its
generalized concepts in order to settle the NPugeRpoly question, which is done here.
(About thisProgram see yet [13, 15].)

Accordingly, in Sections 2 and 3 thestricted type X programend theXG-Poly-SAT
problem are formally defined, and some notes actuded to avoid the traps in these
definitions. In order to define th€G-Poly-SAT computationaldecision problem and poly-
time DTM are redefined in more general form, anéntithe Cook-Levin Theorem is
disproved. So, it is proved that th&-Poly-SATis in NP, with concepts of poly-timeerifier
andcertificate of membershipn Section 4, this demonstration is repeated withold kind,
using decider poly-time NTM. Then, in Section Sstproved that this problem is not in
P/poly (thereforeNP & P/poly, naturally, leading ttNEXP & P/poly, NEXP# MA, NEXP+#
BPP, and other great related results), by demonsgdhiat it is impossible that any poly-time
deterministic computation, even provided at no ebstll with poly-bounded advice function
that depends only on the length of input, solves<i@G-Poly-SATproblem.

In this proof,nothing is assumedbout type, structure, form, code, nature, shape o
kind of computation, neither structure (or lackrddd) of data, eventually used into any DTM
that tries to decide the problem within polynomiahe. Otherwise, my proof exploits
properties of computation that are specific to mgatld computers (withoubracles, infinite
TMs and other supernatural devices). In Sections @Gnd 8, it is demonstrated that the
theoretical barriers against possible attemptslweshe NP versus P/poly question (since NP
« Pl/poly leads to B NP, for Pc P/poly) are not applicable to refute my proof.dHy in
Sections 8 and 9 there are some comments abotadeiark (or lack thereof) to really solve
this question, and references, respectively.

Shortly, in order for this Nl P/poly proof be accepted, it is sufficient that tact if
there is arL-language (promise problem) separating complexagses, then they are truly
distinct, and the Def. 3.8 are both accepted. @ansific revolution/paradigm shifts, see [17],
and, on other amazing insights, see also [26, &7, 2

2. Definition of Restricted Type X Program

Definition 2.1. Let S be a deterministic computer program, iebe a finite positive
integer and letime P(n)be a poly(n) upper bounded number of determinstimputational
steps (where time P(n) is the same for all inpditthe same length, and is not previously
fixed for all possible programs§, but it is fixed for every one)S is arestricted type X
programif and only if the following three conditions asatisfied:

1. S allows as input ang-bit word (member of arbitrary lengthfrom {0, 1}").



2. TheS behavior must be for each input one of the follayvi

I. Sreturns in time P(n0;
ii. Sreturnsin time P(n); or
iii. Sdoes not halt (never returns any value).

3. The totalS behavior must be for eachone of the following:

i. Sreturns in time P(n) for all the 2 possible inputs of lengtt; or
ii. Sreturns in time P(n) for at least one possible input of length

Note 1 The presence @ is not to be decided — see Section 3.3.1. Testimgther a
computer program is a restricted type X progranh mot be necessary to the pro8fwill be
given as an absolute assumption: It IS a restrityee X program, and this fact will NOT be
under consideration: This is not a contradictioefirdtely, since we can easily create
innumerous programs of this type and — without n#eelding about their types — produce a
myriad of instances of the XG-Poly-SAT problem witiem — see Sections 5.1 and 5.2, for
details.

Note 2 There is no need that the polynomial running simevolved in a proof must
be previously fixed in order to be defined: For raxée, what is the fixed polynomial that
upper bounds the running time of the reducer corackein the Cook-Levin Theorem? There
is no such fixed polynomial, since this running dirdepends on the NP problem whose
instance is to be reduced to a Boolean formulathitrunning time of this reducer is (and
must be) polynomial, it is not undefined, of courstherwise there would be no NP-
Completeness. (This insight is formalized in thé.3e8.)

Notice that it does not matter at all that we hawdifferent time bound for each NP
problem, but the same time bound for each instaheefixed one, since for this reducer any
instance from every NP problem is like just a mepaitto a deterministic computer program:
which is important herein, in fact, is that thatlypomial time bound is NOTuniform,
whereas it is — without any contestation — congidefery well defined. (Anyway, see [24] for
a surprisingly claim about this issue.)

Note 3 The running time of a fixedrogram (or machine} on those inputs for which
it halts is bounded by a polynomial P(n) (whichaigime-constructible function (for each
fixed S), evidently??), hence there must be an equivalent machine (b &&ed S) which
always halts, and still runs in deterministic palgmal time, of course.

This, however, is not the main point: It is unimot really whether there must be
such an equivalent machine: What matters for myofprafter all, is that this equivalent
machine (or program) cannot in general be consduatithin deterministic polynomial time,
at all, even though we have at free computatiomperses a polynomial upper bounded
advice function (or set of strings) dependent amyinput size, since that polynomial P(n) is
a priori unknown or not given and — roposition 2.1 in [24] — it cannot be computed
within deterministic polynomial time (see the digdiproofs in [24] and in Section 5).

Note 4 Into the old traditional definitions of the classP and NP, a polynomial P(n)
must be fixed for whichever progra®(in order to the XG-Poly-SAT problem (Def. 3.1)ims
traditional NP), and it is only over the class bfpmly-time machines that such a polynomial
is not fixed. However, into the new definitions tbe classes P and NP (Defs. 3.5, 3.6 and
3.8), there is no need that there is a fixed patyab P(n) for all possiblé& in order to the
XG-Poly-SAT problem is in the new class NP (Defk)3(seeProposition 3.1). Thus, the
comparison with the Cook-Levin Theorem is hereiitegwell placed (in theote 2above).
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3. Definition of the Extended General Poly Problenof Satisfiability of a
Boolean Formula — XG-Poly-SAT

Definition 3.1. Let S be a restricted type X program and tebe a finite positive
integer. TheExtended General Poly Problem of SatisfiabilityaoBoolean Formula(XG-
Poly-SAT is the question: “— DoeSreturn a valud for at least one input of length equal to
n Llogs(P(n))), where P(n) = (running time @& for some input of lengtm)?” Thus, in the
XG-Poly-SAT, the input is the pai{5,1"), clearly, wherel" is justn in unary form. Become
aware of that the specific and fixed time P(n)tedaoS is NOT given at all. Verify yet that
limne logn(P(N)) < degree of any poly(n) that upper bounds the tifmy felated tdS. (Note:
logi(P(1)) is herein defined as equalltdp

Be careful with a possible confusion made about®@ePoly-SAT and the Bounded
Halting problem (BH), defined over triples = (M,x,1), whereM is a nondeterministic
machine,x is a binary stringk is an integer, anav € BH if and only if there exists a
computation ofM on inputx that halts withink steps?: The XG-Poly-SAT is a very
different problem, since the time P(n) is not givand the progran$ into the pair(S,1")
alwayshalts for at least one input of length £lag.(P(n)), but maybes does not halt for all
the other ones. Furthermore, the XG-Poly-SAT camaoteduced within polynomial time to
BH (— See Section 3.4 and [24]). In order to unided why, verify that my XG-Poly-SAT
problem is in the new [generalized] class NP ([3€5), byProposition 3.1, but it is not in that
old traditional one.

3.1 Definition of well-formed string

Definition 3.2. Letw be a string from @, 1} *. w is awell-formed stringf and only if
w has the forml*Os — wherel* is a finite positive integem encoded in unary form argis
the binary representation of the DTM (deterministiaring Machine) that simulates a
restricted type X progran®. Forn = 13, a well-formed stringv would be, for instance,
11121222212111010010001010011100100101011001001010110010010110000110...1

3.2 Definition of the XG-Poly-SAT as well-formed ging acceptance
testing to a languagd.

Definition 3.3. Let L be a formal language over the alphabet {0, 1}. A well-
formed stringw € L if and only if the DTM encoded intw returnsl for at least one input of
length nlLlogn(P(n))l, where P(n) = (running time & for some input of length). The XG-
Poly-SAT is the well-formed string acceptance tegtoL.

Note that as the size of a restricted type X pnogBas constant om (]S[n) =c), the
length of the DTM that simulat&$is constant too on (|s[n) =k), and thefqw|=n + 1 + k
Thus, time P(n) is the same as timpuMp(and time exp(n) is the same as time gxp(

3.3 Class of the languge L and Classof the L.-languageL

L is a nonrecursively enumerable (non-RE or nonfigirecognizable) languad®,
since it is undecidable whether or not an eventesdilt 1 from a computer program occurs
within polynomial time!*®, besides the undecidability even whether justaitshfor some
input 41,

(Note: The undecidability of the languaiedoes NOT contradict the proof. The XG-
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Poly-SAT is not the undecidable decision problene? L, but just the decidable oneell-
formed string w €? L, as explained in Section 3.3.1, since a well-fatrsgingw is givenas
an absolute assumptiow: IS well-formed string, and this fact is NOT unaensideration.
See that exactly the same kind of statement holdgtlitional formal languages, where the
absolute assumption is that the strings to bedeste members from* 1))

Language Incompleteness The computer theorists generally make a big kestan
definition of computational decisioproblem They think that ones is the same thing that
languagesas if all decision problems could be modeledtasgacceptance testing to formal
languages, like in [1, 5, 6]; however, there exigsimputationaldecision problems that can
only be modeled as string acceptance testing-tanguagegas defined in Section 3.3.1), not
to languages, like the XG-Poly-SAT. (See Def. 3.9.)

Thus, all computer theorists generally gapblen to meanlanguagéand vice versa.
See below an excerpt of text of a preeminent Psofes the area, in [10]:

"By Savage's theorem, any PROBLEM in P has a polh@iae family of circuits.
Thus, to show that a PROBLEM is outside of P it ld/guffice to show that its circuit
complexity is superpolynomia[The wordsPROBLEMare lowercased in the original]

However, the set of all languages is a mere prepbset of the stronger and more
powerful set of allL-languages(all the _computational decision problems), as lestiaed
below.

3.3.1 More general definitions for NP, P, P/poly and definion for L -language

Definition 3.4. Let L; be a language over a finite alphal&tand letl < L. We will
callL anLzlanguage If L; =X*, thenL is aX*-language, #rivial L-language which is the
same as languag&{-language = language). The complement ofatanguagéA is another
L-languaged = L; — A. Thus,L,languageis simply a generalization ttanguageand a
string acceptance testing tois a computational decision problemvhere the string to be

tested isnecessarilymember fromL;. If a languagecan be characterized asset an Lz
languagecan be characterized asubsetthat is to say aet into another

Observe that a string acceptance testing t® acomputational decision problerbut
L, rigorously, is not only &nguage becausé. — Lz, which is more restrict than simplyc
>*, which should hold iflL was only a languagél. Thus, all the computational decision
problems can be modeled as string acceptancedsstin-languages, for to accept a string
from any determined subset®f is much more general than do it just fr&f of course.

The main point herein is that the central relevariche languages is originated in the
fact that they model problems, not the inverse. ddengreat part of the Theory of
Computation is about languages because of the kris&derred to in Section 3.3. When this
mistake — that it is said awistakebecause it leaves legitimate problems out of tidt
traditional definition — is fixed, the Theory of @putation will certainly study the

generalization to language: The richer and strongecept ol ;-language.

A language oveL is a subset af*, and arLz-language is a subset of the langubge
overX. However, ad. — L; andL; — X*, thenL < X*, which implies that allL.-languages
areX*-languages, or simply languages, too, naturally. lamguagd. is also arl_-language,
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and anyl--languagel is also a languagk. In fact, if Ly D Lz then anyl -languagel is
anlLy-languagel, too. But the great advantage of thelanguages is that string acceptance
testing to ones can be much easier than to langubgeause the stringsto be tested are in
special formX e L; (this is an absolute assumption). Hence, if we kttwat all the strings to

be tested are from a fixed langualgg then it is worth to model this problem as lan
language; but if we do not know it, we must modelsi a simple language, of course.

Consequently, the concept bof-language allows the insertion of previous knowledge
about the form of the strings to be tested — whegy tvere already constructed in special form
or previously accepted by another machine — irtditional concept of language.

(Note: If the machineéM that decides ahzlanguagel is fed a stringk that is inL.,
thenM mustdecide whether or natis in L, anyway returning correct answerxo=? L; on
the other hand, iM is fed any string that is not i, it may do whatever, returning anything,
evenincorrectanswer tX €? L [X*-languagel., in this case], or even not halting at all.)

For instance, the language™® | n > 0} over {0, 1} is not regular, but verifydhif L
={0"1" | n > 0}U {1"0" | n > 0}, for example, then tHe,-languagel.;1 = {0"1" | n > O} is
regular and can be decided by the NWA= ({qo, g1, 02}, {0, 1}, 3, qo, {q2}), whered(qo, 0) =
{92}, 8(0o, 1) = {qu}, (a1, 0) = B,8(qu1, 1) = B,8(gz, 0) = {02}, (g2, 1) = {a}, and there are
note-moves.

Verify that this NFAM recognizes the languade= 0{0, 1}* and {0"1" | n > 0} =
0{0, 1}* N ({0"" | n > 0}U {1"0" | n > 0}). In fact, this is not coincidence:

Theorem 3.1.1f a machineM (DFA, NFA, PDA, DTM, NTM, etc.) recognizes a
languagd_, thenM recognizes anlz-languagd.1 =L N L.

Proof. Suppose that a stringe Lz-languagd_1 was accepted by a machikk Then,
X € L; (this is an absolute assumption: All the stringbéaested must be member frdu)
and X e L (the language thdil recognizes, regardless of the special fornXpfwhich
implies thatx € L N Lz on the other hand, ¥ € L N Lz, thenX will be accepted b,
becausex € Lz (X can be tested) and € L (X will be accepted by definition of string
acceptance testing to languages), which impliesttiee_.-language recognized byl L1 =
LNL.O

See, thus, the proposed fix and generalizatiornéotriaditional formal definition for
the class\P (Nondeterministic Polynomial Time}*:

Definition 3.5. Let L be anlLlanguagel € NP if and only if there is a binary

relationR < L; X £* and a known and given finite fixed positive integesuch that the
following two conditions are satisfied:

1. ForallX e Lz, X e L < 3y e X* such thafX, y) € Rand|y| e O(|xP); and
2. The languagér = {X#y : (X, ¥) € R} overX U {#} is decidable by a poly-time
DTM.

A DTM that decided.r is called averifier for L and ay such tha(X, y) € Ris called
a certificate of membershipr witnessof X in L. Note that — aX e L; (this is an absolute
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assumption, by Def. 3.4) — we do not need to desowhat languagé; is allowed here.
Hence, condition 2 does NOT require any knowledgeut how to decidd.; in order to
decide whether x#y is ibr, plainly.

Verify that whenlL; = X* and the traditional definition for poly-time DTMaere is
utilized, the formal definition above is equivaleéatthe traditional one for the clai® — a set
of mere languages —, which implies that this orjassa particular case of the proposed fixed
definition. Consequently, we can name the tradaiabassNP as clasdNP-SAT (or, shortly,
SNP or NPt), where the Cook-Levin Theorem (with the hiddesuasption referred in [24])
and all the other mathematical truths on the tiaalii classNP continue holding in
(replacing P # NP” and “P = NP’ by “SAT is not in Pand “SAT is in P, respectively, etc.).
Alternatively, we could call the true clas¥ defined above — an actual set of computational
decision problems, dr-languages — as clabi?-XG-SAT (or, shortly, XNP), for example,
but this naming method would be a mistake: A sub&etld have the name of the set and the
set would have a derived name of the subset, whitlard to explain, confuse and damages
the clearness of the notation. The same happehghdtclasseB andP/poly in Defs. 3.6 and
3.7.

Proposition 3.1.XG-Poly-SAT is in class NP.

Proof. Into the Def. 3.5, fot. modeling the XG-Poly-SATZ = {0, 1}, L is the set of
all well-formed strings (as defined in Section 3d)= 1, andy is a word that encodes an
input of lengthn (i2) and another one of lengthllogn(P(n))J (i2), where(X, y) € R if and
only if the progrants encoded into the well-formed strixghalts in time P(n) for the inpud
and returnsl for the inputi2 (a poly-time DTM that onx#y) decodes and simulatés
running having as input, then counts the running time until itd&herefore computing the
time P(n)) and verifies whether the lengthizo§ equal ton Llogn(P(n))J, and after simulateS
running havingz as input, finally confirming whether it returdsis, in fact, the apterifier
for L). HenceL (XG-Poly-SAT) is in NPO

Note that although the deterministic polynomial giffi(n) =O(n') that the witness
predicate is decided is a different polynomial &ach inputx, XG-Poly-SAT is a single
problem (it is false that any recursive decisioolgbem is poly-time reducible to it, since T(n)
Is not previously fixed for al, but it is fixed for every one, by Def. 2.1 — Sbke note 1
below, for details), wheredoes not depend an even though it does on Consequently(X,

y) €? Ris really decidable in deterministic polynomiahé, by Def. 3.8, and the proof above
is wholly correct: the XG-Poly-SAT is in NP, unddeadly.

See that XG-Poly-SAT has strings of the fotAds, wheres is a DTM simulating a
restricted X progran$ that accepts within polynomial time some strindesfgthn (returning
1 for somen-bit input). Notice that we do NOT need to checketiterS is a restricted X
program, by Def. 3.4.

(Note 1. Suppose that someone says that the XG-Poly-SAfotsn NP, since its
complexity class is really undefined, and it can toe example, EEXP-Hard (for double
exponential time), reasoning as below:

“Let L be an EEXP probleni be the deterministic Turing Machine that sol\em
time t(n) = 2"P°YM} Then we can redudeto XG-Poly-SAT as follows: Given an inpxtfor
the problemL, we construct a progra® that ignores its input and simulate on inputx.
The promise is satisfied by the constant polynomi@’) = t(Jx|), and clearly§(1) is an
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instance of XG-Poly-SAT if and only M accept.”

Fortunately, constructions like above cannot digprthat XG-Poly-SAT is in NP,
since they do not take into account that time Bgnjiot previously fixed for all possible
programsS, but it is fixed for every one, as stated in D&fl — hence, as>Z*°V(X} is not
upper bounded by any fixed poly(n), that progr&@ns not a restricted type X program, and
clearly §,1) is NOT an instance of the XG-Poly-SAT.

Finally, see also that the functiof™®Y} = (|x|) is not constant, but depends on |x|.
However, ifx is fixed into that TMM simulated byS, then this function is a constant (and
then M halts onx within only O(1) steps, sincél and x are fixed independent af);
nonetheless, in this cadd, does not solvé, of course, and then the disproof above fails.)

(Note 2 Suppose, yet, that anyone else says that the XEFAT is not in NP, since
Proposition 3.1 is wrong, as long as either no fiohe TM can simulate a universal TM, or it
— about theverifier for L that on{X#y) simulatesS running having inputs encoded inyo-
does not consider the running time of this simataj which could be non-polynomial.

Fortunately yet, these refutations of Propositich &e equivocated, since a program
S is always restricted (hence, it is NOT a univer§sl), and the running time of the
simulations of the prograri8 (encoded intX) running having input& and theniz encoded
into y ARE necessarily (must be) polynomial, siticee P(n)is a time-constructible function,
by Def. 2.1.

See, however, this interesting review:

“— The author proposes that XG-Poly-SAT is in (pree)NP but not in (promise-)P.
He is right about the second part, but incorrecbuabthe first part: XG-Poly-SAT is
unconditionally not in promise-NP. He gives a denlput fallacious argument that XG-Poly-
SAT is in promise-NP on p. 8. In note 2 on p. &hécipates but rejects a counterargument,
but he is wrong and this counterargument is esagntiorrect.

The reason is as follows: for any Turing machiieand positive integet, we can
form a machinévk that output® on all inputs except those of lendthon which it behaves
like M. If M always halts anti’s behavior depends solely on its input length (ed latter
restrictionsemi-blindnegs thenM is always a restricted type-X machine.

It is known there exists a unary languagenat is decidable, yet it is not in EXPTIME,
hence not in NP. There issemi-blindmachineM that decided. correctly on each input
having the forml"t. But if XG-Poly-SAT were in promise-NP, then weutd solvelL in NP:
given inputx of form x = 1, we decide whethex is in L by running the presumed NP
verifier on the inputNk, 1), which obeys the promise. {ftfis not of form1”t then we can
rejectx.)”

Verify that that conclusion is not true: In ordertty to decide that languadgein NP,
as proposed above, we must run the NP verifiehenrputs of form N, 1), not (Wi, 1),
since to solve whethevl acceptsi™t is quite different from do it aboldl, for M is not the
same thing neither has the same running time coatyplas all the machinelli, Mz, Ms, ...
taken into account as a [countably infinite] séte Tunning time of all thoskl is only O(1),
sincet is a fixed constant intd/;, independent of (Jinput|), whileL(M) is not even in
EXPTIME (henceM is not a restricted type-X machine, at all), whiaiplies, fortunately,
that the inputl¢1, 1) does not obey the promise in Def. 2.1, and theannot be decided in
NP as proposed by that smart reviewer, and thediipeoof above fails too.
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See, also, another interesting and similar review:

“~ Let L be any computable language, encoded in unaryMaaddeterministic TM
that solved.. The program S=s8akes its inpuy, and compare its length xo If |y| = [x|, then
S(y) simulatesvl on inputx, and, ifM(x) accepts, S(y) accepts. Otherwise, S(y) rejetty|
is any other value, S(y) rejects.

Clearly, this S runs in linear time, since all @shto do is count the length ofgxcept
when |y| = |x|, but this is only finitely many egtiens, and hence doesn't change the
asymptotic running time of S. To reducéo XG-Poly-SAT: mapx to the pair (g 1{|x|}).”

Verify that that conclusion is not true too: By meaf the same reasoning above, we
could prove that that languagewould be in NP, sincex&nd its input may be mapped to a
Boolean expression in deterministic polynomial tiffee the running time of ,Sis really only
a fixed constant), and then this contradiction shtvat this other disproof fails too.)

Note that even the languagein item 2 above is, in fact, do-language, wherk; is
the set of all strings of the forix#y. In fact, all complexity classes can be generdliaith
the concept ok ~language like these new definitions proposed for the @a&sandP/poly:

Definition 3.6. Let L be anlL-languagelL e P if and only if for allX € Lz, X €? L is
decidable by a poly-time DTM. Be careful with thags: For example, all;-languagesl.;
are trivially in P (wherelL; can beanylanguage, even non-Turing-recognizable ones), lwhic
does NOT mean that dinguaged_; (X*-languages) are iR, noticeably.

Definition 3.7. Let L be anlL-languagelL e P/poly if there is a languagh in P and
a set of advice strings daay, ...} such that Jg < n®Y andx is in L if and only if , ax) is in
A. 2% Opserve that it suffices the existence of sucktaGadvice strings, where an eventual
cost on computing them does not matter at allheeiéven whether they are computable.

Notice that the proper definition deterministic polynomial-time computatimore
general herein, without losing its more importah&racteristic: To be understood loosely as
“feasible in practice”, where the critique in [48]not applicable:

Definition 3.8: Poly-time DTM. A DTM is said to be polynomial-time if its running
time T(n) =O(n), where k =O(1), even thak depends some way on input. (n = |input|.)

Into the old traditional definitiork must be a fixed constant (that does not depend on
n, obviously), but this stronger restriction is messential to the vital matter: To maintain the
character of vaguely practicable for determiniptitynomial-time computations. In XG-Poly-
SAT, the T(n) of itsverifier is in O(n*), wherek depends on th® encoded intav, but it is in
O(1), sinceO(logs(P(n)))) = O(1), which does not depend on but only on degree of the
minimum poly(n) that upper bounds the time P(njted toS — andk cannot be computéd
neither is given, but it is a fixed constant foctedixed S, by Def. 2.1. Furthermore, the
traditional definition of poly-time DTM asserts a&tlen assumptionk must bea priori a
knownandgivenfixed constant, as revealed in [24].

See that if T(n) £D(2P°Y™), for example, then T(n) ©(n*), wherek (poly(n) log 2)
is not inO(1), evidently, and is upper unbounded (for nonstant poly(n), of course): hence,
in this case T(n) is not polynomial at all. The sahappens witf(n) = O(nN'°Y"). If T(n) =
O(n%), wherek is, for example, the [arbitrary] position of thest 1 inw (or 1, ifw = ("), then
k is not inO(1) too, for those possible positions can be frota flv| =n, hence in the extreme
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case T(n) =O(n"). On the other hand, if T(n) ©(n*™), but now g(n) is upper bounded by a
finite positive constark, that is limw- g(n) < k, then T(n) ©O(n*), whence it is polynomial.

Some experts are asserting: “— The XG-Poly-SAToisim NP (in the author's terms):
the polynomial h CANNOT depend on the input.” However, this asseris false, being true
only for the old traditional definition of polynoalitime DTM, since in the new definition
(Def. 3.8), the polynomial CAN definitely depend the input — as long as thiatis in O(1).
Think: This is just a matter of Math object defioit, not of mathematical error or
correctness, at all. We are not obligated to foltgolete definitions only because they are
established, unless the Science is finished (a)d&ee Section 9.

Very important Verify that these new definitions of the clasBed/poly and NP are
simply good_generalizations of the old traditiomales: Any traditional P, P/poly or NP
problem IS too, respectively, in the new class/BpR or NP defined above (even though the
converse is in general false, since these new gkrext classes are strictly larger than the
traditional ones), and any superpolynomial deteistizy deterministic/poly or
nondeterministic problem is NOT in the new classPfoly or NP, respectively, which
proves that these generalizations are consistehsmaooth.

3.3.2 A new NP genealogy

In fact, the traditional class NP (that we calldierNR) can be divided into two new
disjoint classes: NPA(when thatp(n) is known and given) and NRwhenp(n) is unknown or
not given), where NP= NPy U NPy and NR N NPy = @. Into traditional beliefs, NPis
considerate equal to yFand NR is considerate equal @, but these considerations take not
account that the class NPan be a genuine, useful and very important coxtglelass into
the development of the Computational Complexity drlgewith great powerful applications
in mathematically proven unbreakable within polymainiime public-key cryptography, for
instance. By the way, see [28].

Into more formal terms, lets see the definitionstfe two new disjoint classes that
build the traditional clasBlP:: NPy andNPy (traditional Nondeterministic Polynomial Time
when the involved polynomial time is or not giveespectively):

Definition 3.9. NRy. Let L be a language ovet. L € NPy if and only if there is a
binary relationR — £* X X* and a known and given finite fixed positive integesuch that

the following two conditions are satisfied:
1. Forallx e £*, X € L < 3y € £* such tha(X, y) € Rand|y| e O(|xP); and
2. The languagelr = {X#y : (X, Y) € R} over £ U {#} is decidable by a
polynomial-time DTM whose polynomial is fixed, knavand given.

Definition 3.10. NR.. Let L be a language ovet. L € NPy if and only if there is a

binary relationR — X* X X* and a known and given finite fixed positive integesuch that
the following two conditions are satisfied:

1. Forallx e T*, X € L & 3y € ¥* such tha(X, y) € Rand|y| e O(]xP); and

2. The languagel: = {X#y : (X, Y) € R} over £ U {#} is decidable by a
polynomial-time DTM whose polynomial is fixed, bunknown or not given.

Definition 3.11. NR. NPt = NPy U NP..
10



Let's see now the definitions for the cla®.: Non-uniform Nondeterministic
Polynomial Time, as NfBbut when the involved polynomial time is NOT fixed

Definition 3.11. NR. Let L be a language ov&t. L € NP if and only if there is a

binary relationR — X* X X* and a known and given finite fixed positive integesuch that
the following two conditions are satisfied:

1. Forallx e T*, X € L & 3y € ¥* such tha(X, y) € Rand|y| e O(]xP); and

2. The languagéd: = {X#y : (X, ¥) € R} overX U {#} is decidable by a poly-time
DTM, as defined in Def. 3.8.

Now, the old traditional class NP (NFs clearly seen simply as a proper subset of our
new and legitimate extended class NP:(NMMRP,) = NP (as defined in Def. 3.5).

As always, in all the definitions above a DTM thlacided.: is called averifier for L
and ay such tha(X, y) € Ris called acertificate of membershipr witnessof X in L.

3.3.3 L-languages and Promise Problems

An L-languagel can be considered aspeomise problenj], as introduced by Alan
L. Selman [Information and Computation, Vol. 7&us 2, (1988), pp. 87-98] and defined in
[9], where thepromise ([Tves U []no) = Lz []ves = L, []no = Lz — L, and its restricted
alphabet {0, 1} is generalized to any finite alpagb. Nonetheless, notice that the concepts,

notation, generality, power and applicability oéth-languagesare clearer, richer, simpler,
conciser, more elegant, aesthetic and strongerahes of thggromise problems

3.4 More general definition for Computational Decsion Problem

Note yet that the definition ofomputational decision problemsed herein is also
more general, without losing its more essentiaitaite: To modekll real computer-based
guestions — not only a small part of them — havwmg and only one answer from two
alternatives'®:

Definition 3.9: A computational decision problem any arbitraryyesor-No (True-
or-Falsg question on a finite or infinite set of inputsrigsgs of any finite length over a finite
alphabetX), where these ones are necessarily member frorthemaoetermined set (or
consistently the set of inputd obligatory specified fornfor which the problem returnges
(True)). Equivalently, decision problemare completely isomorphic th-languages of
strings, and can always be modeled as string amceptesting th.-languages.

Into the traditional definition for computationakasion problem® 8l using plain
languages, the inputs for a problem are simply fibif whereas for this more general
definition they are from any arbitrary subse®df. So, we can considertaditional problem
(languag@ as aset and amore generabne {languag¢ as asubsewf aset Hence, the set
of all languagesl(; = £*) is just a little proper subset of the set oflallanguagesl(; = any
subset o&*). So, onlyoneset characterizes language, but we needsets fol_~language.

See yet that, for this generalization, the stritm$e tested (into a string acceptance
testing to arl_-language) are necessarily (must be) member frewhateverl_; is), where
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this fact IS an absolute assumption and IS NOT wundasideration. Verify that exactly the
same kind of statement holds to traditional fortaaguages, where the absolute assumption
is that the strings to be tested (into a stringeptance testing to a language) are always
necessarily (must be) members frévh

3.4.1 The falseness of the Cook-Levin Theorem
Theorem 3.2.The Cook-Levin Theorem (CLT) is false.

Proof. See it in [24]. There are some comments on[@2%j.

3.4.1.1 How can a Theorem be false?

Since atheoremis an absolute mathematical truth, how can thek@d@vin Theorem
be false? — See it in [24].

4. Old demonstration that the XG-Poly-SAT is in NP

Givenn and a restricted type X progreBnthe question “DoeS return a valud. for at
least one input of length =[mog(P(n))l, where P(n) = (running time & for some input of
lengthn)?” can be decided in nondeterministic poly-timien& NP(n): similar to time P(n),
using nondeterminism), since can be constructediersal NTM (nondeterministic TM)
that simply simulates the running & and tests it for all 2™ possible inputs of
that length at the same time (“on parallel”) andfigs in time NP(n) the returns: If they abe
for all the inputs, then the NTM will answer “Nofter the conclusion of the last computation
path (branch); on the other hand, if at least etern is1 then the NTM will answer “Yes” at
the end of the first path that returhsregardless of whether or not the other pathsyate
running. One and only one of these two events imagpen in time NP(n), by Def. 2.1.

Verify that the NTM, in order to compute the timén] counts initially this time
simulating the running 0% — and counting the number of its steps — fortadl 2' possible
ones(like above, “on parallel”), and waiting anyonehalt. Note that, by Def. 2.15 must
halt in time P(n) for at least one input of anygtén

5. Demonstration that the XG-Poly-SAT is not in Réoly

Theorem 5.1.NEXP & P/poly.

Proof. As demonstrated in Sections 3.3.1 and 4, anynosta of the EXP-SAT can
be recognized in nondeterministic polynomial tildewever, can it be recognized by a poly-
time DTM provided at no cost at all with a set ofypbounded advice strings (or functiam)
that depend only on |w| (or, equivalently, withrer-unifornj family of polynomial-size
Boolean circuit$??)?

By hypothesis, consider that it can: In this camsast exist a DTMQ that — given a
poly-bounded advice functidm (only dependent on |w|), a positive integeand a restricted
type X programsS into w — answers correctly within polynomial time the sfi@en “DoesS
return a valud for at least one input of length 3 legn(P(n))], where P(n) = (running time of
S for some input of lengtim)?” (If w is in XG-Poly-SAT, thenQ(w, h(w]) = “Yes”, else

Q(w, h(w)) = “No”).
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Proposition 5.1. While the functionh is like a supernatural device, that computes
anything that depends only on the size of input eaa be stored within poly-space, even
answers to undecidable problems or superpoly-timaaomputable functions, at absolutely
no cost at all —, the DTMD is, in fact, a real computer program. Althoughmiay work
entirely in a different way from someone would extpigom the method that the XG-Poly-
SAT was definedQ cannot be a magical or dream machine, since itt rbesan actual
machine.

So, letW: X* X L; — N be a function with a DTM and a well-formed inpaut ft as
arguments, where W (Q, w) = m (Q can simulate the running & into w and test some
inputs forSin such a simulation — considered herein a steptéy process runnirfginto Q),
thenm is the number of inputs f@ simulated byQ in this process: 8 m < 2",

Note: It does not matter for this proof wheth&fris a computable function or not; and
if X is not a DTM or is not interested in the XG-PolydSproblem, therW (X, w) is defined
as 0.

Thus, in order to answer the question, there arenmacles:Q must found — even
though with the help fromh on |w| — the value of the time P(n), in order t@leate
nLlogn(P(n))l, since ifQ does not know this information, then it is comelgdost about even
what to search or compute in order to answer thi@ opaestion on XG-Poly-SAT, whei@
can act into only four possible ways (where= W(Q, w)):

1. Q simulates the running &for:

i. All the possible inputsnf = 2");

ii. All the inputs from an arbitrary nonempty propebset of all them
O<m<2Y; or

iii. Only one input (or all from a nonempty proper sulegeall them) previously
computed, wher& halts on this input (or wher® halts on anyone of these
inputs) m=d < 2".

2. Q does not simulate the running®t all (n = 0).
Note: all the inputs in this Section anebit, unless another is explicitly indicated.

Proof. These ways are exhaustive: Eitigssimulates the running & or not; and, if
Q simulates the running &, then it can test on it all the possible input$)(&rbitrarily less
than all ones (1.ii); or just one (or all from anempty proper subset of all them) that was
anyway previously computed whose return decidegqthestion (1.iii). Unfortunately, there
are no more alternatives besides that ones. (Note:ways (1.i)) and (1.iij),n must be
polynomial inn in order toQ can decide the XG-Poly-SAT in deterministic polymal
time.)

As well, the running time of a universal NTM thacitles in time NP(n) the XG-Poly-
SAT — as in Section 4 — cannot be upper boundeahlgyfixed poly(n). Moreover, a program
S does not necessarily halt for all its possibleuisp Furthermore, the time P(n) in Def. 2.1
cannot be upper bounded by any fixed poly(n), Tdws, in general, cannot exist any fixed
poly(n) number of TM configurations that represehtsentire processing &

Additionally, as to find the input whose return diss the question and simulate the
running of S only for this input is impossible (see in Way ilbelow), the particular fixed
running time P(n) of a specific restricted type ¥ogram cannot be computed within any
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fixed poly(n) upper bounded number of deterministnputational steps. Hence, an instance
of the XG-Poly-SAT cannot be reduced within polynaihtime into another one of another
poly-time decidable problem, because the reducehma must run within polynomial time
in this case, but it cannot previously know or comepwhat upper bounds that time P(n), by
Proposition 2.1 in [24]0

Suppose that someone claims, with the followinguargnt, that the Nz P/poly
proof of mine fails: “— The author assumes that 4h@ays mentioned are the only way to
solve the problem. Why can't the DT®Idecide the question some other way?”

The answer is not complicate@ cannot decide the question by some other way
because there is no another possible way to délcalXG-Poly-SAT besides the four ones
mentioned above: These ways do not specify typectsire, form, code, nature, shape or kind
of computation, neither structure (or lack theredfilata — but just theumber (m) and kind
of inputs (arbitrary or computed) tested in eventual simulated running & —, into any
running of any DTM that tries to decide the XG-Poly-SAT: (1) atiputs M = 2); (2)
arbitrary ones less than all (Onx < 2"); (3) computed ones less than afl € d < 2"); or (4)
none (there is no simulatirgat all) (m = 0).

Can there be some other way? No, by a reasoningasito pigeonholesfrom
pigeonhole principleEitherQ simulatesS or not. And simulating for more than all inputs —
or for any subset with exponential number of thentkeads to exp(n) running time, as
explained in the Way 1.i; less than none go to tiegaumber of inputs, which makes no
sense in actual computations; and between thests lthe number and kind of inputs for
eventual simulated running 8fmust be one from the four mentioned above.

Consequently, all the possible deterministic corapoms to decide the XG-Poly-SAT
are really into one from these four ways.

Can we create new ways to decide in deterministignomial time the XG-Poly-SAT
combining the four ones? Unfortunately, no way: Tay 1.i is useless to decide in
deterministic polynomial time the question; the way is useless to decide in any time the
XG-Poly-SAT; and the combination of the ways laiid 2 results simply in the way 2 —
when none result from the simulation is used®in order to answer the question, which is
the case treated below in the way 2.

Hence, claims like above do not go to refute thsaNP/poly proof.

Note, yet, that the method utilized in this proahoot be adapted to decide whether
SAT is in P, because if a progréris simulating a Boolean formula withvariables, itmust
always halt for all the possible inputs; howevars tadditional restricted condition cannot be
held in general restricted type X programs, like anthe proof of the Propositions 5.2 below.
Hence, to decide whether an arbitrary general ohtéstic computer program halts for
determined input (which is undecidable, by the Rid&eorent)) cannot be reduced to SAT
as it does to XG-Poly-SAT (as demonstrated in pinef), and then any attempt to adapt my
proof to solve whether SAT is in P is condemnetatit.

See that ifSis simulating a Boolean formula withvariables, then the Rice's Theorem
cannot be applied to ti&behavior for any input, since it is restricted &irthe possible ones.

Finally, suppose that else one tries to refuteptivef saying:

“This proof follows a common theme: Defines an NBlgpem with a certain structure,
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argues that any algorithm that solves that probfeost work in a certain way and any
algorithm that works that way must examine an egptial number of possibilities. But we
can't assume anything about how an algorithm wakkgorithms can ignore the underlying
semantic meaning of the input and focus on theasyiatpart, the bits themselves.”

As in the previous “refutation” of my proof, thesaver is also not complicated: If the
DTM Q ignores the underlying semantic meaningvaind focus on its syntactic part, the bits
themselves, considering just a series of bits, this approach only plaQesito the Way 2 —
whereQ does not simulate the running $fat all (n = 0) —, and then the proof continues to
hold, naturally.

Shortly, the spirit of the proof is very simpleetXG-Poly-SAT is decidable by brute-
force search because whetl&halts for at least one input from all theé fssible ones is
decidable, whereas wheth@malts for at least one from a nonempty proper e&ubkthem is
in general undecidable, by Def. 2.1, which does @lidhe other ways to decide the XG-Poly-
SAT (without brute-force searching) be absolutepéiess.

Consequently, we can say that one of the profounglesstions in Computational
Complexity Theory was solved by this plain ingemi@haracterization, the Def. 2.1!

Be brave and see below that all these four exhaustays to decide in deterministic
polynomial time the XG-Poly-SAT fail:

Way 1.i Q simulates the running &for all the possible inputsn = 27):

The obvious way in order to the DT to compute the time P(n) is to simulate one
step by time the running @& for all the 2 possible one¢in a breadth-first search, to avoid
running forever in a computation path that doeshadt), counting the number of the steps in
each one of these paths of this simulation andvgagtnyone to halt. Note that, by Def. 231,
must halt in time P(n) for at least one input oy &ngth. (After this, it suffices to simulate
the running ofS for all inputs of length = hlogn(P(n)) (in a breadth-first search), verifying
whether there is a resdlf in order to decide the XG-Poly-SAT.)

Nevertheless, this brute-force method, on worseé,cean compute the time P(n) only
at the end of testing all these inputs, in time(exp

Notice that the advice functiom(jw|) cannot help enoug® herein, in this step-by-
step simulation, in order to avoid brute-force skerg, sinceh can encode only fixed
poly(|w|)-bounded quantity of information, whergaseeds to treat eventually inputs for
whose length is upper unbounded by any fixed pa|y(|searching unavoidably exp(n)-
bounded (hence exp(Jw|)-bounded) number (also wppeounded by any fixed exp(n)) of
possible results fror8, unfortunately.

Way Lii Q simulates the running df for all the inputs from an arbitrary
nonempty proper subset of all them (h<< 2.

Note that to simulate the running ®bnly for a polynomial number of arbitrary inputs
(or just for a number of them less than all thesjie ones — for instance!®® ") does not
work: Even the test of"2- 2 inputs on the simulation cannot help to coraghé time P(n) if
S does not halt for any simulated ones (in facts §imulation cannot help to decide even
whetherS simply halts for a specified input from these twrees).

Moreover, even the simple question whetBehalts for at least one input from an
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arbitrary nonempty proper subset of the set ofttadl 2' possible inputs is undecidable, of
course, by Def. 2.1. (Obs.: This question is orggidable for the set of all these possible
inputs: The answer is always “True”, by Def. 2.1.)

Note again that the advice functibfjw| cannot help enoug® herein too, by same
reasons from Way 1.i.

Way 1.iii Q simulates the running & only for an input (or inputs) previously
computedih =d < 2.

Proposition 5.2.A DTM Q cannot compute, without simulating the runningsdbr
all the 2 possible inputs, a nonempty proper subset of omiesreS halts for at least one of
them, and then to simulate the runningafnly for these inputs to compute the time P(n).

Proof. Let a well-formed string be constructed with an arbitrary and let the
restricted type X progrark be below, wher€ was, by the Turing-Church Thesis, translated
into a computer program where it was included tiggructionSimulated by Q[e] := True;
just before any instruction of this program tharist the simulation oF for any inpute
(Simulated_by_ Qs a global variable of type dynamic array or veaf Booleans values that
was initialized withFalsein all its positions).

We callQ’ to this program derived froiQ. Verify that if Q runs in polynomial time,
thenQ’ also do it, of course, and the behaviors and tefdmQ’ andQ are the same.

01. F(string input) {// F is a restricted type X program, since it returrferlat least one ...
02. if (Simulated_by QIinput]) do { input :=“1"; } whe (1 = 1);// infinite loop ond inputs
03. else return(1)y ... input of any length, sind®@ does not simulate all thé @nes

04.}

It is easy see th&p, simulating the running d only for inputs previously computed
(not all them, of course, sinek< 2"), cannot compute the time P(n) I6f sinceF does not
halt (line 02) for any input simulated I§). Verify yet thatQ cannot decide whethé&r halts
for any determined input, for this problem is undeble, by the Acceptance Problem for
DTM. O

See once more that the advice functidii]) cannot help enougl® herein too, by
similar reasons from Way 1.i. Note also that imdd possible to put information uprf|) to
help enoughQ in order to it can decide wheth&(f, h([f])) = Q'(f, h(|f])), for example,
because this decision is independent|ptlearly.

Way 2. Q does not simulate the running®at all (m = 0):

If the running time of) depends on the one of the restricted type X pro@anto w
for some input (where & does not halt for any input, th€hdoes not halt at all, too), which
occurs wherQQ acts reducingv into instance of another problem or simulating ritening of
S, then the use of the diagonalization method ireptd demonstrate tht cannot decide the
problem fails, sinc&) does nohave to be as restricted 8sBut, as these running times are
independent ones in the special case treated h&rberew is considered just a bit string, or
Q decides whethe® returnsl for some input by engaging in more indirect reasgrabout
the code ofS, without simulating it at all, then we can usegdiaalization in order to
demonstrate tha) cannot decide the XG-Poly-SAT. E.g.,@f converts a problem i
without 2¥1%size circuits into a PRG which fool&-size ones, for any fixed thenQ is here.
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Note that if the running time @ is anyway always greater than one of the restficte
type X prograns into w for some input (where, rememberSfdoes not halt for any input,
thenQ does not halt at all, too), th&n is, maybe indirectly, simulating the running®for
this same input or reducing the instance of the P@B~SAT constructed witls to instance
of another problem, of course. In general, to reduithin polynomial time an instance of the
XG-Poly-SAT is impossible, by the proof of the Posftion 5.1. We will see below that to
compute that time P(n) without simulating the rungnof S — or do it in a running time upper
bounded by a fixed (or even non-fixed) integer polyial function of W| — is impossible,
too.

Notice yet that if the prograi@ into w must been only one specified, fixed and known
program, then the input to XG-Poly-SAT would beyonland we could encode the value of
the time P(n) in the functioh, whereh(n) = P(n) andQ would have this information within
polynomial [constant] time. Howeves, can be any program that complies with the Def, 2.1
and the value of the time P(n) is entirely indemeidof the size of5, thus this value is
completely independent of |w|, hence is imposdibiée h helpsQ on this computation, as
proved in the Proposition below:

Proposition 5.3 Is impossible to compute within deterministic ypwmial time the
time P(n) ofS for a givenn without simulating the running @& at all, even with the help at
no cost of a poly-bounded advice functton

Proof. Assume thaQ can, usingh, compute and returk on any instancev of the
XG-Poly-SAT, wherek mustbe the running time db into w for some input of length (the
time P(n)). Then, le§ into w be the DTM (computer program) below — note thatQais
supposed to be poly-tim&,is really arestricted type X program

01. S(input){

02. k:=Qfw, h(jw|)); // Q runs on an arbitrary instaneeand returng

03. execute (k+1000) arbitrary stepsthis diagonalization maké&3 always ...
04. if (k > 8000) return(0); else return(1);... wrong whem = length(input)
05.}

Thus, as it is easily seen above, the diagonadizatiakes that the running time $f
into w is always greater than the result frgmwhenn = length of the input. Hence, cannot
exist a poly-time DTM that, even freely using aypbbunded advice function, returns the
running time ofSinto an arbitraryw on input of determined size.

Suppose, however, th@ could decide whether there is diagonalization sitong Q.
In this caseQ could stay running forever, no returning anythinngalh which would imply
that it would not be incorrect, because, in thse¢8 would not beestricted type X

However,S can in general execute any arbitrary deterministagram. Hence, iQ
can decide whether there is diagonalization iBtothen Q can decide whether a given
arbitrary deterministic program has a particulantngial behavior, which is undecidable, by
the Rice's Theorem; of course, for we can easiiingk this behavior into a string acceptance
testing to a formal language (reflect: replacipgould beany computer program in the line
02). HenceQ cannot decide whether there is diagonalization 8tlasting then condemned
to fault: to answer incorrectly the question, bg thagonalization above (line 08).

Perceive that to state th@ answers whatsoever if and onlywf is a well-formed
string does not work, because, as demonstrate@cdtiof 3.3,L (the set of all well-formed
strings) is a non-RE language, which implies fQatannot decide whether is a well-formed
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string in order to decide accordingly whether i @nswer anything without mistaking. That
is, in order toQ works in this case, it must assume absolutelywhet a well-formed string,
and then this assumption implies that it is retalle, and tha@ for the inputw returns within
polynomial time incorrect answer, by the diagoretian above int&.

Observe thath(lw]) cannot do anything herein too, since the dilemrbava is
independent of |w|, of course.

Observe yet that if the DTN decides the XG-Poly-SAT simulating the runningsSpf
thenQ cannot run in time upper bounded by any fixed pohgial function ofy, h(Jw]| (in
fact, none TM — DTM or NTM — that decides the XGHRSAT can do it), undoubtedly, by
Def. 2.1.

Conclusion:

As demonstrated above, all the four exhaustive iplessways to decide in
deterministic polynomial time, even provided atceust with poly-bounded advice function
that depends only on the length of input, the X®~#ZAT fail: Consequently, there exists a
computational decision problem that can be decidetbndeterministic polynomial time, but
not in deterministic polynomial time, even providat free computational expenses with
polynomial upper bounded advice function (or sestoings) dependent only on input size,
which impliesNP ¢ P/poly, naturally, in our sad computational worid.

For this reason, by union of the Rice's Theorera,diagonalization method and the
complexity classes P/poly and NP, this proof iseautiful unification and an amazing
synthesis between the Computability Theory anddbmputational Complexity Theory, like
that one in [19].

Lastly, someone can say that if a fixed and knpatynomialp(n) > time P(n) of the
program S into w is given (see this one is not deterministic patyet computable, by
Proposition 2.1 in [24], neither can be encoded imt sincep(n) is independent of |w|,
clearly), then the instances of the XG-Poly-SAT banreduced to Boolean formula ones by
Cook-Levin Theorem, and then if the SAT is decidaiol deterministic poly-time, then the
XG-Poly-SAT is too. Big idea!

This conclusion is erroneous, however, since kngvariixedp(n) > that time P(n) is
unnecessary to decide the problem (the univers MilSection 4 and the universal DTM in
Way 1.i decide the XG-Poly-SAT without knowing thigformation (or without such an
input), naturally), proving that nondeterministiongputation is fundamentally much more
faster than deterministic computation — even thoitigh freely provided with poly-bounded
advice function that depends only on the size pliin-, and that the brute-force search is
unfortunately unavoidable in the real-world compiotas (I'm very sorry): To verify a correct
answer is definitely very easier than find it, matly.

5.1 Running time of the functions into programs
About running in time P(n) and time greater than)Pgt the function be:

01.Poly_Function(string input) {

02. inti, counter := 0, n := length(input);

03. fori:=1to n"10 { counter := counter + 1//}poly(n) upper bounded running time
04. if (counter > 100) return(1); else return(0);

05.}
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The function above evaluated at stringut is just a number, naturally. But we can
decide that its running time is poly(n) upper boeshdvheren = jnput. We don't need a TM
to decide it. On the other hand, let the functien b

01. SuperPoly_Function(string input)

02.{

03. inti, counter := 0, n := length(input);

04. fori:=1to 2"n { counter := counter + 1{/}exp(n) upper bounded running time
05. if (counter > 100) return(1); else return(0);

06.}

Of course, the running time of the function aboseekponential im. We know
countless functions as the ones ab&vdo use them in order to make restricted type X
programs. Constructing restricted type X prograsiagialgorithms with known running time
is human work, not TM computatid.

5.2 Example of construction of an instance of thEG-Poly-SAT
Let the restricted type X progragbe:

01. S(string input)

02.{

03. remainder := mod(integer(input), 2);// remainder on division of input (converted into
Il integer) by 2

04. if (remainder = 0) return(Fun2(input));returns the value returned Byn2 and halts

05. if (remainder = 1) return(Funl(input));never halts

06.}

07.Funl(string input)

08.{

09. do {input:="“1"; } while (1 = 1);/ infinite loop
10. return(l);

11.}

12. Fun2(string input)

13.

14. inti, counter := 0, n := length(input);

15. fori:=1to n™10 { counter := counter + 1//}poly(n) upper bounded running time
16. if (counter > 0) return(1); else return(0);

17.}

Thus, we can simply convert this progr&mto a DTM M, translate it into a binary
form s, and then construct the well-formed striwg= 11111110s, an instance of the XG-
Poly-SAT. Herein, constructing XG-Poly-SAT instaacé stands very clear that the human
reasoning is much more powerful than mechanical)(@dputation.

6. Baker-Gill-Solovay Theorem and the Proof

Verify that the proof does not use the diagon#ibramethod (except in the justified
special cases in Section 5) and it is based albbmutdifference, on worst cases, between
running times from a DTM and an NTM that recogrizel ;-languagd., as demonstrated in
Way 1.i of Section 5 compared to Section 4.
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Moreover, notice that the addition into the prooéthods of oracles to a PSPACE-
Complete languag®/ does not imply that false statemeMt:PNP" (because the proof cannot
be adapted to demonstrate thdtzPNP", since a DTMQ with an oracle taV could simulate
any NTM with the same oracle using only a poly(ogatity of space, in an adapted Way 1.i,
which would otherwise prove that'® NPY).

These facts imply that the Baker-Gill-Solovay Thexorof inseparability of the classes
P and NP by oracle-invariant methods (techniquas d@he conserved under the addition of
oracles, like the pure diagonalization method wittadgebraic oraclé®!) does not refute this
NP ¢ P/poly proof. In other words, my proof techniques notelativize!!.

7. Razborov-Rudich Theorem and the Proof

SAT's weakness The proof does not try to prove any lower boundsthe circuit
complexity of a Boolean function, because it does try to solve the still open question
whether SAT is in P, since to prove NPP/poly it was not necessary to solve the SAT
question (for the proof, different from the wrongnclusion in [3, 6], it is irrelevant whether
SAT is in P), whereas it was enough to prove th@tPoly-SAT is in NP but not in P: Thus,
the Razborov-Rudich Theorem of the Natural Proafesdnot refute this proof. In other
words, my proof technique does matturalizel’l.

8. Related Work, Aaronson-Wigderson Theorem and t& Proof

There is no relevant related work on the goal flyesolve the NP versus P/poly
question. From important papers upon the mattergthre only some “negative” results, like
the ones referred to in Sections 6 and 7 and, mecently, as an extension of the
relativizationin Section 6, the proof that techniques that amserved under the addition of
an oracle and a low-degree extension of it ovemigeffield or ring cannot work on this
question too, by the conceptalfebrization explained in [8].

Remember, however, that my proof does not use uhe giagonalization method (as
referred to in Section 6), but it exploits propestiof computation that are specific to real
world computers, and then this new barrier is radidvto refute it, too.

9. Expert Advice & Academic Honesty

A reviewer, referring to the technical report irb]Lhas said “— It is disconcerting to
see how the present author continues to ignorereageice. His title borders on, and perhaps
transgresses, academic honesty. Papers with saobigse claims should only be considered
after an endorsement by an expert.”

The heart of my paper is just challenging someiticathl definitions on TCS field,
essentially the need of poly-uniformity on the defons of the classes P/poly and NP. But
that technical report says, for instance: “— A®efinition 3.5 of his paper ... needs to before
the universal quantification anfix a polynomial bounding the length of the cectftes, we
from here on assume that his definition is vieweth@ing modified to do that ...”

So, as my proposed new definitions are so distartatlat expert advice, it has very
low value in order to evaluate my proof, thus igngrit is not really academic dishonesty at
all, but only logical consequence of that challengen enhancing those definitions.
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10. Freedom & Mathematics

“_ The essence of Mathematics is FreeddhiGeorg Cantor¥®l
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