
NP ⊄ P/poly Proof

André Luiz Barbosa
http://www.andrebarbosa.eti.br

Non-commercial projects: SimuPLC – PLC Simulator & LCE – Electric Commands Language

Abstract. This paper demonstrates that NP ⊄ P/poly. The way was to generalize the
traditional definitions of the classes P, P/poly and NP, to construct an artificial problem (a
generalization to SAT: The XG-Poly-SAT, much more difficult than the former) and then to
demonstrate that it is in NP but not in P/poly (where the classes P, P/poly and NP are
generalized and called too simply P, P/poly and NP in this paper, and then it is explained
why the traditional classes P, P/poly and NP should be fixed and replaced by these
generalized ones into Theory of Computer Science). The demonstration consists of:

1. Definition of Restricted Type X Program
2. Definition of the Extended General Poly Problem of Satisfiability of a Boolean

Formula – XG-Poly-SAT
3. Generalization to classes P, P/poly and NP
4. Demonstration that the XG-Poly-SAT is in NP
5. Demonstration that the XG-Poly-SAT is not in P/poly
6. Demonstration that the Baker-Gill-Solovay Theorem does not refute the proof
7. Demonstration that the Razborov-Rudich Theorem does not refute the proof
8. Demonstration that the Aaronson-Wigderson Theorem does not refute the proof

Mathematics Subject Classification (2010). Primary 68Q15; Secondary 68Q17.

Keywords. P, P/poly, NP, Computational Complexity, Formal Languages, Automata Theory.

Contents

1 Introduction 02

2 Definition of Restricted Type X Program 02

3 Definition of Extended General Poly Problem of Satisfiability – XG-Poly-SAT 04

3.1 Definition of well-formed string 04
3.2 Definition of the XG-Poly-SAT as well-formed string acceptance testing to a language L 04
3.3 Class of the language L and class of the Lz-language L 04
 3.3.1 More general definitions for NP, P, P/poly and definition for Lz-language 05
 3.3.2 A new NP genealogy 10
 3.3.3 Lz-languages and Promise Problems 11
3.4 More general definition for Computational Decision Problem 11
 3.4.1 The falseness of Cook-Levin Theorem 12
 3.4.1.1 How can a Theorem be false? 12

4 Old demonstration that the XG-Poly-SAT is in NP 12

5 Demonstration that the XG-Poly-SAT is not in P/poly 12

5.1 Running time of the functions into programs 18
5.2 Example of construction of an instance of the XG-Poly-SAT 19

6 Baker-Gill-Solovay Theorem and the Proof 19

7 Razborov-Rudich Theorem and the Proof 20

 2

8 Related Work, Aaronson-Wigderson Theorem and the Proof 20

9 Expert Advice & Academic Honesty 20

10 Freedom & Mathematics 21

11 References 21

1. Introduction

We, following The Barbosa’s Program and the ideas proposed in [19], could utilize its
generalized concepts in order to settle the NP versus P/poly question, which is done here.
(About this Program, see yet [13, 15].)

Accordingly, in Sections 2 and 3 the restricted type X programs and the XG-Poly-SAT
problem are formally defined, and some notes are included to avoid the traps in these
definitions. In order to define the XG-Poly-SAT, computational decision problem and poly-
time DTM are redefined in more general form, and then the Cook-Levin Theorem is
disproved. So, it is proved that the XG-Poly-SAT is in NP, with concepts of poly-time verifier
and certificate of membership. In Section 4, this demonstration is repeated with the old kind,
using decider poly-time NTM. Then, in Section 5 it is proved that this problem is not in
P/poly (therefore, NP ⊄ P/poly, naturally, leading to NEXP ⊄ P/poly, NEXP ≠ MA, NEXP ≠
BPP, and other great related results), by demonstrating that it is impossible that any poly-time
deterministic computation, even provided at no cost at all with poly-bounded advice function
that depends only on the length of input, solves the XG-Poly-SAT problem.

In this proof, nothing is assumed about type, structure, form, code, nature, shape or
kind of computation, neither structure (or lack thereof) of data, eventually used into any DTM
that tries to decide the problem within polynomial time. Otherwise, my proof exploits
properties of computation that are specific to real world computers (without oracles, infinite
TMs and other supernatural devices). In Sections 6, 7 and 8, it is demonstrated that the
theoretical barriers against possible attempts to solve the NP versus P/poly question (since NP
⊄ P/poly leads to P ≠ NP, for P ⊂ P/poly) are not applicable to refute my proof. Finally, in
Sections 8 and 9 there are some comments about related work (or lack thereof) to really solve
this question, and references, respectively.

Shortly, in order for this NP ⊄ P/poly proof be accepted, it is sufficient that the fact if

there is an Lz-language (promise problem) separating complexity classes, then they are truly
distinct, and the Def. 3.8 are both accepted. On scientific revolution/paradigm shifts, see [17],
and, on other amazing insights, see also [26, 27, 28].

2. Definition of Restricted Type X Program

Definition 2.1. Let S be a deterministic computer program, let n be a finite positive
integer and let time P(n) be a poly(n) upper bounded number of deterministic computational
steps (where time P(n) is the same for all inputs of the same length, and is not previously
fixed for all possible programs S, but it is fixed for every one). S is a restricted type X
program if and only if the following three conditions are satisfied:

1. S allows as input any n-bit word (member of arbitrary length n from {0, 1}+).

 3

2. The S behavior must be for each input one of the following:

 i. S returns in time P(n) 0;
 ii. S returns in time P(n) 1; or
 iii. S does not halt (never returns any value).

3. The total S behavior must be for each n one of the following:

 i. S returns in time P(n) 0 for all the 2n possible inputs of length n; or
 ii. S returns in time P(n) 1 for at least one possible input of length n.

Note 1: The presence of S is not to be decided – see Section 3.3.1. Testing whether a

computer program is a restricted type X program will not be necessary to the proof. S will be
given as an absolute assumption: It IS a restricted type X program, and this fact will NOT be
under consideration: This is not a contradiction, definitely, since we can easily create
innumerous programs of this type and – without need deciding about their types – produce a
myriad of instances of the XG-Poly-SAT problem with them – see Sections 5.1 and 5.2, for
details.

Note 2: There is no need that the polynomial running times involved in a proof must
be previously fixed in order to be defined: For example, what is the fixed polynomial that
upper bounds the running time of the reducer concerned in the Cook-Levin Theorem? There
is no such fixed polynomial, since this running time depends on the NP problem whose
instance is to be reduced to a Boolean formula, but the running time of this reducer is (and
must be) polynomial, it is not undefined, of course, otherwise there would be no NP-
Completeness. (This insight is formalized in the Def. 3.8.)

Notice that it does not matter at all that we have a different time bound for each NP
problem, but the same time bound for each instance of a fixed one, since for this reducer any
instance from every NP problem is like just a mere input to a deterministic computer program:
which is important herein, in fact, is that that polynomial time bound is NOT uniform,
whereas it is – without any contestation – considered very well defined. (Anyway, see [24] for
a surprisingly claim about this issue.)

Note 3: The running time of a fixed program (or machine) S on those inputs for which

it halts is bounded by a polynomial P(n) (which is a time-constructible function (for each
fixed S), evidently [22]), hence there must be an equivalent machine (to each fixed S) which
always halts, and still runs in deterministic polynomial time, of course.

This, however, is not the main point: It is unimportant really whether there must be
such an equivalent machine: What matters for my proof, after all, is that this equivalent
machine (or program) cannot in general be constructed within deterministic polynomial time,
at all, even though we have at free computational expenses a polynomial upper bounded
advice function (or set of strings) dependent only on input size, since that polynomial P(n) is
a priori unknown or not given and – by Proposition 2.1 in [24] – it cannot be computed
within deterministic polynomial time (see the detailed proofs in [24] and in Section 5).

Note 4: Into the old traditional definitions of the classes P and NP, a polynomial P(n)

must be fixed for whichever program S (in order to the XG-Poly-SAT problem (Def. 3.1) is in
traditional NP), and it is only over the class of all poly-time machines that such a polynomial
is not fixed. However, into the new definitions of the classes P and NP (Defs. 3.5, 3.6 and
3.8), there is no need that there is a fixed polynomial P(n) for all possible S in order to the
XG-Poly-SAT problem is in the new class NP (Def. 3.5) (see Proposition 3.1). Thus, the
comparison with the Cook-Levin Theorem is herein quite well placed (in the note 2 above).

 4

3. Definition of the Extended General Poly Problem of Satisfiability of a
Boolean Formula – XG-Poly-SAT

Definition 3.1. Let S be a restricted type X program and let n be a finite positive

integer. The Extended General Poly Problem of Satisfiability of a Boolean Formula (XG-
Poly-SAT) is the question: “– Does S return a value 1 for at least one input of length equal to
n logn(P(n)), where P(n) = (running time of S for some input of length n)?” Thus, in the
XG-Poly-SAT, the input is the pair 〈S,1n〉, clearly, where 1n is just n in unary form. Become
aware of that the specific and fixed time P(n) related to S is NOT given at all. Verify yet that
limn→∞ logn(P(n)) ≤ degree of any poly(n) that upper bounds the time P(n) related to S. (Note:
log1(P(1)) is herein defined as equal to 1.)

Be careful with a possible confusion made about the XG-Poly-SAT and the Bounded
Halting problem (BH), defined over triples w = 〈M,x,1k〉, where M is a nondeterministic
machine, x is a binary string, k is an integer, and w ∈ BH if and only if there exists a
computation of M on input x that halts within k steps [12]: The XG-Poly-SAT is a very
different problem, since the time P(n) is not given, and the program S into the pair 〈S,1n〉
always halts for at least one input of length = n logn(P(n)), but maybe S does not halt for all
the other ones. Furthermore, the XG-Poly-SAT cannot be reduced within polynomial time to
BH (– See Section 3.4 and [24]). In order to understand why, verify that my XG-Poly-SAT
problem is in the new [generalized] class NP (Def. 3.5), by Proposition 3.1, but it is not in that
old traditional one.

 3.1 Definition of well-formed string

Definition 3.2. Let w be a string from {0, 1} +. w is a well-formed string if and only if

w has the form 1+0s – where 1+ is a finite positive integer n encoded in unary form and s is
the binary representation of the DTM (deterministic Turing Machine) that simulates a
restricted type X program S. For n = 13, a well-formed string w would be, for instance,
111111111111101001000101001110010010101100100101011001001011110010010110...1.

3.2 Definition of the XG-Poly-SAT as well-formed string acceptance

testing to a language L

Definition 3.3. Let L be a formal language over the alphabet Σ = {0, 1}. A well-

formed string w ∈ L if and only if the DTM encoded into w returns 1 for at least one input of
length n logn(P(n)), where P(n) = (running time of S for some input of length n). The XG-
Poly-SAT is the well-formed string acceptance testing to L.

Note that as the size of a restricted type X program S is constant on n (|S|(n) = c), the
length of the DTM that simulates S is constant too on n (|s|(n) = k), and then |w| = n + 1 + k.
Thus, time P(n) is the same as time P(|w|) and time exp(n) is the same as time exp(|w|).

3.3 Class of the language L and Class of the Lz-language L

L is a nonrecursively enumerable (non-RE or non-Turing-recognizable) language [1],
since it is undecidable whether or not an eventual result 1 from a computer program occurs
within polynomial time [18], besides the undecidability even whether just it halts for some
input [4].

(Note: The undecidability of the language L does NOT contradict the proof. The XG-

 5

Poly-SAT is not the undecidable decision problem w ∈? L, but just the decidable one well-
formed string w ∈? L, as explained in Section 3.3.1, since a well-formed string w is given as
an absolute assumption: w IS well-formed string, and this fact is NOT under consideration.
See that exactly the same kind of statement holds to traditional formal languages, where the
absolute assumption is that the strings to be tested are members from Σ* [1].)

Language Incompleteness – The computer theorists generally make a big mistake on
definition of computational decision problem: They think that ones is the same thing that
languages, as if all decision problems could be modeled as string acceptance testing to formal
languages, like in [1, 5, 6]; however, there exist computational decision problems that can
only be modeled as string acceptance testing to Lz-languages (as defined in Section 3.3.1), not
to languages, like the XG-Poly-SAT. (See Def. 3.9.)

Thus, all computer theorists generally say 'problem' to mean 'language' and vice versa.
See below an excerpt of text of a preeminent Professor in the area, in [10]:

"By Savage's theorem, any PROBLEM in P has a polynomial size family of circuits.
Thus, to show that a PROBLEM is outside of P it would suffice to show that its circuit
complexity is superpolynomial." [The words PROBLEM are lowercased in the original]

However, the set of all languages is a mere proper subset of the stronger and more

powerful set of all Lz-languages (all the computational decision problems), as established
below.

3.3.1 More general definitions for NP, P, P/poly and definition for Lz-language

Definition 3.4. Let Lz be a language over a finite alphabet, Σ, and let L ⊆ Lz. We will
call L an Lz-language. If Lz = Σ* , then L is a Σ* -language, a trivial Lz-language, which is the
same as language (Σ* -language = language). The complement of an Lz-language A is another
Lz-language Ā = Lz – A. Thus, Lz-language is simply a generalization to language and a
string acceptance testing to L is a computational decision problem where the string to be
tested is necessarily member from Lz. If a language can be characterized as a set, an Lz-
language can be characterized as a subset, that is to say a set into another.

Observe that a string acceptance testing to L is a computational decision problem, but
L, rigorously, is not only a language, because L ⊆ Lz, which is more restrict than simply L ⊆
Σ* , which should hold if L was only a language [6]. Thus, all the computational decision
problems can be modeled as string acceptance testing to Lz-languages, for to accept a string
from any determined subset of Σ* is much more general than do it just from Σ*, of course.

The main point herein is that the central relevance of the languages is originated in the
fact that they model problems, not the inverse. Hence, great part of the Theory of
Computation is about languages because of the mistake referred to in Section 3.3. When this
mistake – that it is said as mistake because it leaves legitimate problems out of that old
traditional definition – is fixed, the Theory of Computation will certainly study the
generalization to language: The richer and stronger concept of Lz-language.

A language over Σ is a subset of Σ* , and an Lz-language is a subset of the language Lz
over Σ. However, as L ⊆ Lz and Lz ⊆ Σ* , then L ⊆ Σ*, which implies that all Lz-languages
are Σ*- languages, or simply languages, too, naturally. Any language L is also an L-language,

 6

and any Lz-language L is also a language L. In fact, if Ly ⊇ Lz then any Lz-language L is
an Ly-language L, too. But the great advantage of the Lz-languages is that string acceptance
testing to ones can be much easier than to languages, because the strings x to be tested are in
special form: x ∈ Lz (this is an absolute assumption). Hence, if we know that all the strings to
be tested are from a fixed language Lz, then it is worth to model this problem as an Lz-
language; but if we do not know it, we must model it as a simple language, of course.

Consequently, the concept of Lz-language allows the insertion of previous knowledge
about the form of the strings to be tested – when they were already constructed in special form
or previously accepted by another machine – into traditional concept of language.

(Note: If the machine M that decides an Lz-language L is fed a string x that is in Lz,
then M must decide whether or not x is in L, anyway returning correct answer to x ∈? L; on
the other hand, if M is fed any string that is not in Lz, it may do whatever, returning anything,
even incorrect answer to x ∈? L [Σ* -language L, in this case], or even not halting at all.)

For instance, the language {0n1n | n > 0} over {0, 1} is not regular, but verify that if Lz
= {0n1n | n > 0} U {1n0n | n > 0}, for example, then the Lz-language L1 = {0n1n | n > 0} is
regular and can be decided by the NFA M = ({q0, q1, q2}, {0, 1}, δ, q0, {q2}), where δ(q0, 0) =
{q2}, δ(q0, 1) = {q1}, δ(q1, 0) = Ø, δ(q1, 1) = Ø, δ(q2, 0) = {q2}, δ(q2, 1) = {q2}, and there are
not ε-moves.

Verify that this NFA M recognizes the language L = 0{0, 1}* and {0n1n | n > 0} =
0{0, 1}* ∩ ({0n1n | n > 0} U {1n0n | n > 0}). In fact, this is not coincidence:

Theorem 3.1. If a machine M (DFA, NFA, PDA, DTM, NTM, etc.) recognizes a
language L, then M recognizes any Lz-language L1 = L ∩ Lz.

Proof. Suppose that a string x ∈ Lz-language L1 was accepted by a machine M: Then,
x ∈ Lz (this is an absolute assumption: All the strings to be tested must be member from Lz)
and x ∈ L (the language that M recognizes, regardless of the special form of x), which
implies that x ∈ L ∩ Lz; on the other hand, if x ∈ L ∩ Lz, then x will be accepted by M,
because x ∈ Lz (x can be tested) and x ∈ L (x will be accepted by definition of string
acceptance testing to languages), which implies that the Lz-language recognized by M L1 =
L ∩ Lz. �

See, thus, the proposed fix and generalization to the traditional formal definition for
the class NP (Nondeterministic Polynomial Time) [14]:

Definition 3.5. Let L be an Lz-language. L ∈ NP if and only if there is a binary
relation R ⊆ Lz × Σ* and a known and given finite fixed positive integer p such that the
following two conditions are satisfied:

1. For all x ∈ Lz, x ∈ L ⇔ ∃y ∈ Σ* such that (x, y) ∈ R and |y| ∈ O(|x|p); and

2. The language Lr = {x#y : (x, y) ∈ R} over Σ U {#} is decidable by a poly-time
DTM.

A DTM that decides Lr is called a verifier for L and a y such that (x, y) ∈ R is called

a certificate of membership or witness of x in L. Note that – as x ∈ Lz (this is an absolute

 7

assumption, by Def. 3.4) – we do not need to describe what language Lz is allowed here.
Hence, condition 2 does NOT require any knowledge about how to decide Lz in order to
decide whether x#y is in Lr, plainly.

Verify that when Lz = Σ* and the traditional definition for poly-time DTM there is
utilized, the formal definition above is equivalent to the traditional one for the class NP – a set
of mere languages –, which implies that this one is just a particular case of the proposed fixed
definition. Consequently, we can name the traditional class NP as class NP-SAT (or, shortly,
SNP or NPt), where the Cook-Levin Theorem (with the hidden assumption referred in [24])
and all the other mathematical truths on the traditional class NP continue holding in
(replacing “P ≠ NP” and “P = NP” by “SAT is not in P” and “SAT is in P”, respectively, etc.).
Alternatively, we could call the true class NP defined above – an actual set of computational
decision problems, or Lz-languages – as class NP-XG-SAT (or, shortly, XNP), for example,
but this naming method would be a mistake: A subset would have the name of the set and the
set would have a derived name of the subset, which is hard to explain, confuse and damages
the clearness of the notation. The same happens with the classes P and P/poly in Defs. 3.6 and
3.7.

Proposition 3.1. XG-Poly-SAT is in class NP.

Proof. Into the Def. 3.5, for L modeling the XG-Poly-SAT, Σ = {0, 1} , Lz is the set of
all well-formed strings (as defined in Section 3.1), p = 1, and y is a word that encodes an
input of length n (i1) and another one of length n logn(P(n)) (i2), where (x, y) ∈ R if and
only if the program S encoded into the well-formed string x halts in time P(n) for the input i1
and returns 1 for the input i2 (a poly-time DTM that on 〈x#y〉 decodes and simulates S
running having i1 as input, then counts the running time until it halts (therefore computing the
time P(n)) and verifies whether the length of i2 is equal to n logn(P(n)), and after simulates S
running having i2 as input, finally confirming whether it returns 1, is, in fact, the apt verifier
for L). Hence, L (XG-Poly-SAT) is in NP. �

Note that although the deterministic polynomial time T(n) = O(ni) that the witness

predicate is decided is a different polynomial for each input x, XG-Poly-SAT is a single
problem (it is false that any recursive decision problem is poly-time reducible to it, since T(n)
is not previously fixed for all S, but it is fixed for every one, by Def. 2.1 – See the note 1
below, for details), where i does not depend on n, even though it does on x. Consequently, (x,
y) ∈? R is really decidable in deterministic polynomial time, by Def. 3.8, and the proof above
is wholly correct: the XG-Poly-SAT is in NP, undoubtedly.

See that XG-Poly-SAT has strings of the form 1n0s, where s is a DTM simulating a
restricted X program S that accepts within polynomial time some string of length n (returning
1 for some n-bit input). Notice that we do NOT need to check whether S is a restricted X
program, by Def. 3.4.

(Note 1: Suppose that someone says that the XG-Poly-SAT is not in NP, since its
complexity class is really undefined, and it can be, for example, EEXP-Hard (for double
exponential time), reasoning as below:

“Let L be an EEXP problem, M be the deterministic Turing Machine that solves L in

time t(n) = 22^{poly(n)}. Then we can reduce L to XG-Poly-SAT as follows: Given an input x for
the problem L, we construct a program S that ignores its input and simulates M on input x.
The promise is satisfied by the constant polynomial p(n') = t(|x|), and clearly (S,1) is an

 8

instance of XG-Poly-SAT if and only if M accepts x.”

Fortunately, constructions like above cannot disprove that XG-Poly-SAT is in NP,
since they do not take into account that time P(n) is not previously fixed for all possible
programs S, but it is fixed for every one, as stated in Def. 2.1 – hence, as 22^{poly(|x|)} is not
upper bounded by any fixed poly(n), that program S is not a restricted type X program, and
clearly (S,1) is NOT an instance of the XG-Poly-SAT.

Finally, see also that the function 22^{poly(|x|)} = t(|x|) is not constant, but depends on |x|.
However, if x is fixed into that TM M simulated by S, then this function is a constant (and
then M halts on x within only O(1) steps, since M and x are fixed independent of n);
nonetheless, in this case, M does not solve L, of course, and then the disproof above fails.)

(Note 2: Suppose, yet, that anyone else says that the XG-Poly-SAT is not in NP, since
Proposition 3.1 is wrong, as long as either no poly-time TM can simulate a universal TM, or it
– about the verifier for L that on 〈x#y〉 simulates S running having inputs encoded into y –
does not consider the running time of this simulations, which could be non-polynomial.

Fortunately yet, these refutations of Proposition 3.1 are equivocated, since a program
S is always restricted (hence, it is NOT a universal TM), and the running time of the
simulations of the program S (encoded into x) running having inputs i1 and then i2 encoded
into y ARE necessarily (must be) polynomial, since time P(n) is a time-constructible function,
by Def. 2.1.

See, however, this interesting review:

“– The author proposes that XG-Poly-SAT is in (promise-)NP but not in (promise-)P.
He is right about the second part, but incorrect about the first part: XG-Poly-SAT is
unconditionally not in promise-NP. He gives a simple but fallacious argument that XG-Poly-
SAT is in promise-NP on p. 8. In note 2 on p. 8 he anticipates but rejects a counterargument,
but he is wrong and this counterargument is essentially correct.

The reason is as follows: for any Turing machine M and positive integer t, we can
form a machine Mt that outputs 0 on all inputs except those of length t, on which it behaves
like M. If M always halts and M’s behavior depends solely on its input length (call this latter
restriction semi-blindness), then Mt is always a restricted type-X machine.

It is known there exists a unary language L that is decidable, yet it is not in EXPTIME,
hence not in NP. There is a semi-blind machine M that decides L correctly on each input
having the form 1^t. But if XG-Poly-SAT were in promise-NP, then we could solve L in NP:
given input x of form x = 1^t, we decide whether x is in L by running the presumed NP
verifier on the input (Mt, 1^t), which obeys the promise. (If x is not of form 1^t, then we can
reject x.)”

Verify that that conclusion is not true: In order to try to decide that language L in NP,
as proposed above, we must run the NP verifier on the inputs of form (M, 1^t), not (Mt, 1^t),
since to solve whether M accepts 1^t is quite different from do it about Mt, for M is not the
same thing neither has the same running time complexity as all the machines M1, M2, M3, ...
taken into account as a [countably infinite] set. The running time of all those Mt is only O(1),
since t is a fixed constant into Mt, independent of n (|input|), while L(M) is not even in
EXPTIME (hence, M is not a restricted type-X machine, at all), which implies, fortunately,
that the input (M, 1^t) does not obey the promise in Def. 2.1, and then L cannot be decided in
NP as proposed by that smart reviewer, and then the disproof above fails too.

 9

See, also, another interesting and similar review:

“– Let L be any computable language, encoded in unary, and M a deterministic TM
that solves L. The program S=Sx takes its input y, and compare its length to x. If |y| = |x|, then
S(y) simulates M on input x, and, if M(x) accepts, S(y) accepts. Otherwise, S(y) rejects. If |y|
is any other value, S(y) rejects.

Clearly, this S runs in linear time, since all it has to do is count the length of y, except

when |y| = |x|, but this is only finitely many exceptions, and hence doesn't change the
asymptotic running time of S. To reduce L to XG-Poly-SAT: map x to the pair (Sx, 1^{|x|}).”

Verify that that conclusion is not true too: By means of the same reasoning above, we
could prove that that language L would be in NP, since Sx and its input may be mapped to a
Boolean expression in deterministic polynomial time (for the running time of Sx is really only
a fixed constant), and then this contradiction shows that this other disproof fails too.)

Note that even the language Lr in item 2 above is, in fact, an Lz-language, where Lz is

the set of all strings of the form x#y. In fact, all complexity classes can be generalized with
the concept of Lz-language, like these new definitions proposed for the classes P and P/poly:

Definition 3.6. Let L be an Lz-language. L ∈ P if and only if for all x ∈ Lz, x ∈? L is
decidable by a poly-time DTM. Be careful with the traps: For example, all Lz-languages Lz
are trivially in P (where Lz can be any language, even non-Turing-recognizable ones), which
does NOT mean that all languages Lz (Σ* -languages) are in P, noticeably.

Definition 3.7. Let L be an Lz-language. L ∈ P/poly if there is a language A in P and
a set of advice strings {a0, a1, …} such that |an| ≤ nO(1) and x is in L if and only if (x, a|x|) is in
A. [20] Observe that it suffices the existence of such a set of advice strings, where an eventual
cost on computing them does not matter at all, neither even whether they are computable.

Notice that the proper definition of deterministic polynomial-time computation is more
general herein, without losing its more important characteristic: To be understood loosely as
“feasible in practice”, where the critique in [29] is not applicable:

Definition 3.8: Poly-time DTM. A DTM is said to be polynomial-time if its running
time T(n) = O(nk), where k = O(1), even that k depends some way on input. (n = |input|.)

Into the old traditional definition, k must be a fixed constant (that does not depend on
n, obviously), but this stronger restriction is not essential to the vital matter: To maintain the
character of vaguely practicable for deterministic polynomial-time computations. In XG-Poly-
SAT, the T(n) of its verifier is in O(nk), where k depends on the S encoded into w, but it is in
O(1), since O(logn(P(n))) = O(1), which does not depend on n, but only on degree of the
minimum poly(n) that upper bounds the time P(n) related to S – and k cannot be computed [1]
neither is given, but it is a fixed constant for each fixed S, by Def. 2.1. Furthermore, the
traditional definition of poly-time DTM asserts a hidden assumption: k must be a priori a
known and given fixed constant, as revealed in [24].

See that if T(n) = O(2poly(n)), for example, then T(n) = O(nk), where k (poly(n) logn 2)
is not in O(1), evidently, and is upper unbounded (for non-constant poly(n), of course): hence,
in this case T(n) is not polynomial at all. The same happens with T(n) = O(nlog n). If T(n) =
O(nk), where k is, for example, the [arbitrary] position of the first 1 in w (or 1, if w = 0n), then
k is not in O(1) too, for those possible positions can be from 1 to |w| = n, hence in the extreme

 10

case T(n) = O(nn). On the other hand, if T(n) = O(ng(n)), but now g(n) is upper bounded by a
finite positive constant k, that is limn→∞ g(n) < k, then T(n) = O(nk), whence it is polynomial.

Some experts are asserting: “– The XG-Poly-SAT is not in NP (in the author's terms):
the polynomial nk CANNOT depend on the input.” However, this assertion is false, being true
only for the old traditional definition of polynomial-time DTM, since in the new definition
(Def. 3.8), the polynomial CAN definitely depend on the input – as long as that k is in O(1).
Think: This is just a matter of Math object definition, not of mathematical error or
correctness, at all. We are not obligated to follow obsolete definitions only because they are
established, unless the Science is finished (or dead). See Section 9.

Very important: Verify that these new definitions of the classes P, P/poly and NP are
simply good generalizations of the old traditional ones: Any traditional P, P/poly or NP
problem IS too, respectively, in the new class P, P/poly or NP defined above (even though the
converse is in general false, since these new generalized classes are strictly larger than the
traditional ones), and any superpolynomial deterministic, deterministic/poly or
nondeterministic problem is NOT in the new class P, P/poly or NP, respectively, which
proves that these generalizations are consistent and smooth.

3.3.2 A new NP genealogy

In fact, the traditional class NP (that we call herein NPt) can be divided into two new
disjoint classes: NPg (when that p(n) is known and given) and NPu (when p(n) is unknown or
not given), where NPt = NPg U NPu and NPk ∩ NPu = Ø. Into traditional beliefs, NPt is
considerate equal to NPg, and NPu is considerate equal to Ø, but these considerations take not
account that the class NPu can be a genuine, useful and very important complexity class into
the development of the Computational Complexity Theory, with great powerful applications
in mathematically proven unbreakable within polynomial time public-key cryptography, for
instance. By the way, see [28].

Into more formal terms, lets see the definitions for the two new disjoint classes that
build the traditional class NPt: NPg and NPu (traditional Nondeterministic Polynomial Time
when the involved polynomial time is or not given, respectively):

Definition 3.9. NPg. Let L be a language over Σ. L ∈ NPg if and only if there is a
binary relation R ⊆ Σ* × Σ* and a known and given finite fixed positive integer p such that
the following two conditions are satisfied:

1. For all x ∈ Σ*, x ∈ L ⇔ ∃y ∈ Σ* such that (x, y) ∈ R and |y| ∈ O(|x|p); and

2. The language Lr = {x#y : (x, y) ∈ R} over Σ U {#} is decidable by a
polynomial-time DTM whose polynomial is fixed, known and given.

Definition 3.10. NPu. Let L be a language over Σ. L ∈ NPu if and only if there is a

binary relation R ⊆ Σ* × Σ* and a known and given finite fixed positive integer p such that
the following two conditions are satisfied:

1. For all x ∈ Σ*, x ∈ L ⇔ ∃y ∈ Σ* such that (x, y) ∈ R and |y| ∈ O(|x|p); and

2. The language Lr = {x#y : (x, y) ∈ R} over Σ U {#} is decidable by a
polynomial-time DTM whose polynomial is fixed, but unknown or not given.

Definition 3.11. NPt. NPt = NPg U NPu.

 11

Let's see now the definitions for the class NPn: Non-uniform Nondeterministic

Polynomial Time, as NPt but when the involved polynomial time is NOT fixed:

Definition 3.11. NPn. Let L be a language over Σ. L ∈ NPn if and only if there is a
binary relation R ⊆ Σ* × Σ* and a known and given finite fixed positive integer p such that
the following two conditions are satisfied:

1. For all x ∈ Σ*, x ∈ L ⇔ ∃y ∈ Σ* such that (x, y) ∈ R and |y| ∈ O(|x|p); and

2. The language Lr = {x#y : (x, y) ∈ R} over Σ U {#} is decidable by a poly-time
DTM, as defined in Def. 3.8.

Now, the old traditional class NP (NPt) is clearly seen simply as a proper subset of our

new and legitimate extended class NP: (NPt U NPn) ⊂ NP (as defined in Def. 3.5).

As always, in all the definitions above a DTM that decides Lr is called a verifier for L
and a y such that (x, y) ∈ R is called a certificate of membership or witness of x in L.

3.3.3 Lz-languages and Promise Problems

An Lz-language L can be considered as a promise problem ∏, as introduced by Alan
L. Selman [Information and Computation, Vol. 78, Issue 2, (1988), pp. 87-98] and defined in
[9], where the promise (∏YES U ∏NO) = Lz, ∏YES = L, ∏NO = Lz – L, and its restricted
alphabet {0, 1} is generalized to any finite alphabet Σ. Nonetheless, notice that the concepts,
notation, generality, power and applicability of the Lz-languages are clearer, richer, simpler,
conciser, more elegant, aesthetic and stronger than ones of the promise problems.

3.4 More general definition for Computational Decision Problem

 Note yet that the definition of computational decision problem used herein is also
more general, without losing its more essential attribute: To model all real computer-based
questions – not only a small part of them – having one and only one answer from two
alternatives [16]:

Definition 3.9: A computational decision problem is any arbitrary Yes-or-No (True-
or-False) question on a finite or infinite set of inputs (strings of any finite length over a finite
alphabet Σ), where these ones are necessarily member from another determined set (or
consistently the set of inputs of obligatory specified form for which the problem returns Yes
(True)). Equivalently, decision problems are completely isomorphic to Lz-languages of
strings, and can always be modeled as string acceptance testing to Lz-languages.

Into the traditional definition for computational decision problem [1, 16], using plain
languages, the inputs for a problem are simply from Σ* , whereas for this more general
definition they are from any arbitrary subset of Σ* . So, we can consider a traditional problem
(language) as a set, and a more general one (Lz-language) as a subset of a set. Hence, the set
of all languages (Lz = Σ*) is just a little proper subset of the set of all Lz-languages (Lz = any
subset of Σ*). So, only one set characterizes language, but we need two sets for Lz-language.

See yet that, for this generalization, the strings to be tested (into a string acceptance
testing to an Lz-language) are necessarily (must be) member from Lz (whatever Lz is), where

 12

this fact IS an absolute assumption and IS NOT under consideration. Verify that exactly the
same kind of statement holds to traditional formal languages, where the absolute assumption
is that the strings to be tested (into a string acceptance testing to a language) are always
necessarily (must be) members from Σ*.

3.4.1 The falseness of the Cook-Levin Theorem

 Theorem 3.2. The Cook-Levin Theorem (CLT) is false.

Proof. See it in [24]. There are some comments on it in [25].

3.4.1.1 How can a Theorem be false?

Since a theorem is an absolute mathematical truth, how can the Cook-Levin Theorem
be false? – See it in [24].

4. Old demonstration that the XG-Poly-SAT is in NP

Given n and a restricted type X program S, the question “Does S return a value 1 for at
least one input of length = n logn(P(n)), where P(n) = (running time of S for some input of
length n)?” can be decided in nondeterministic poly-time (time NP(n): similar to time P(n),
using nondeterminism), since can be constructed a universal NTM (nondeterministic TM)
that simply simulates the running of S and tests it for all 2n logn(P(n)) possible inputs of
that length at the same time (“on parallel”) and verifies in time NP(n) the returns: If they are 0
for all the inputs, then the NTM will answer “No” after the conclusion of the last computation
path (branch); on the other hand, if at least one return is 1 then the NTM will answer “Yes” at
the end of the first path that returns 1, regardless of whether or not the other paths are yet
running. One and only one of these two events must happen in time NP(n), by Def. 2.1.

Verify that the NTM, in order to compute the time P(n), counts initially this time
simulating the running of S – and counting the number of its steps – for all the 2n possible
ones (like above, “on parallel”), and waiting anyone to halt. Note that, by Def. 2.1, S must
halt in time P(n) for at least one input of any length.

5. Demonstration that the XG-Poly-SAT is not in P/poly

Theorem 5.1. NEXP ⊄ P/poly.

Proof. As demonstrated in Sections 3.3.1 and 4, any instance w of the EXP-SAT can
be recognized in nondeterministic polynomial time. However, can it be recognized by a poly-
time DTM provided at no cost at all with a set of poly-bounded advice strings (or function) h
that depend only on |w| (or, equivalently, with a [non-uniform] family of polynomial-size
Boolean circuits [20])?

By hypothesis, consider that it can: In this case, must exist a DTM Q that – given a
poly-bounded advice function h (only dependent on |w|), a positive integer n and a restricted
type X program S into w – answers correctly within polynomial time the question “Does S
return a value 1 for at least one input of length = n logn(P(n)), where P(n) = (running time of
S for some input of length n)?” (If w is in XG-Poly-SAT, then Q(w, h(|w|)) = “Yes”, else
Q(w, h(|w|)) = “No”).

 13

Proposition 5.1. While the function h is like a supernatural device, that computes
anything that depends only on the size of input and can be stored within poly-space, even
answers to undecidable problems or superpoly-time or incomputable functions, at absolutely
no cost at all –, the DTM Q is, in fact, a real computer program. Although it may work
entirely in a different way from someone would expect from the method that the XG-Poly-
SAT was defined, Q cannot be a magical or dream machine, since it must be an actual
machine.

So, let W: Σ* × Lz → N be a function with a DTM and a well-formed input for it as
arguments, where if W(Q, w) = m (Q can simulate the running of S into w and test some
inputs for S in such a simulation – considered herein a step-by-step process running S into Q),
then m is the number of inputs for S simulated by Q in this process: 0 ≤ m ≤ 2n.

Note: It does not matter for this proof whether W is a computable function or not; and
if X is not a DTM or is not interested in the XG-Poly-SAT problem, then W(X, w) is defined
as 0.

Thus, in order to answer the question, there are no miracles: Q must found – even
though with the help from h on |w| – the value of the time P(n), in order to evaluate
n logn(P(n)), since if Q does not know this information, then it is completely lost about even
what to search or compute in order to answer the main question on XG-Poly-SAT, where Q
can act into only four possible ways (where m = W(Q, w)):

1. Q simulates the running of S for:

i. All the possible inputs (m = 2n);
ii. All the inputs from an arbitrary nonempty proper subset of all them

(0 < m < 2n); or
iii. Only one input (or all from a nonempty proper subset of all them) previously

computed, where S halts on this input (or where S halts on anyone of these
inputs) (m = d < 2n).

2. Q does not simulate the running of S at all (m = 0).

Note: all the inputs in this Section are n-bit, unless another is explicitly indicated.

Proof. These ways are exhaustive: Either Q simulates the running of S or not; and, if

Q simulates the running of S, then it can test on it all the possible inputs (1.i); arbitrarily less
than all ones (1.ii); or just one (or all from a nonempty proper subset of all them) that was
anyway previously computed whose return decides the question (1.iii). Unfortunately, there
are no more alternatives besides that ones. (Note: Into ways (1.ii) and (1.iii), m must be
polynomial in n in order to Q can decide the XG-Poly-SAT in deterministic polynomial
time.)

As well, the running time of a universal NTM that decides in time NP(n) the XG-Poly-
SAT – as in Section 4 – cannot be upper bounded by any fixed poly(n). Moreover, a program
S does not necessarily halt for all its possible inputs. Furthermore, the time P(n) in Def. 2.1
cannot be upper bounded by any fixed poly(n), too. Thus, in general, cannot exist any fixed
poly(n) number of TM configurations that represents the entire processing of S.

Additionally, as to find the input whose return decides the question and simulate the
running of S only for this input is impossible (see in Way 1.iii below), the particular fixed
running time P(n) of a specific restricted type X program cannot be computed within any

 14

fixed poly(n) upper bounded number of deterministic computational steps. Hence, an instance
of the XG-Poly-SAT cannot be reduced within polynomial time into another one of another
poly-time decidable problem, because the reducer machine must run within polynomial time
in this case, but it cannot previously know or compute what upper bounds that time P(n), by
Proposition 2.1 in [24]. �

Suppose that someone claims, with the following argument, that the NP ⊄ P/poly
proof of mine fails: “– The author assumes that the 4 ways mentioned are the only way to
solve the problem. Why can't the DTM Q decide the question some other way?”

The answer is not complicated: Q cannot decide the question by some other way
because there is no another possible way to decide the XG-Poly-SAT besides the four ones
mentioned above: These ways do not specify type, structure, form, code, nature, shape or kind
of computation, neither structure (or lack thereof) of data – but just the number (m) and kind
of inputs (arbitrary or computed) tested in eventual simulated running of S –, into any
running of any DTM that tries to decide the XG-Poly-SAT: (1) all inputs (m = 2n); (2)
arbitrary ones less than all (0 < m < 2n); (3) computed ones less than all (m = d < 2n); or (4)
none (there is no simulating S at all) (m = 0).

Can there be some other way? No, by a reasoning similar to pigeonholes from
pigeonhole principle: Either Q simulates S or not. And simulating S for more than all inputs –
or for any subset with exponential number of them – leads to exp(n) running time, as
explained in the Way 1.i; less than none go to negative number of inputs, which makes no
sense in actual computations; and between these limits the number and kind of inputs for
eventual simulated running of S must be one from the four mentioned above.

Consequently, all the possible deterministic computations to decide the XG-Poly-SAT
are really into one from these four ways.

Can we create new ways to decide in deterministic polynomial time the XG-Poly-SAT
combining the four ones? Unfortunately, no way: The way 1.i is useless to decide in
deterministic polynomial time the question; the way 1.ii is useless to decide in any time the
XG-Poly-SAT; and the combination of the ways 1.iii and 2 results simply in the way 2 –
when none result from the simulation is used by Q in order to answer the question, which is
the case treated below in the way 2.

Hence, claims like above do not go to refute this NP ⊄ P/poly proof.

Note, yet, that the method utilized in this proof cannot be adapted to decide whether
SAT is in P, because if a program S is simulating a Boolean formula with n variables, it must
always halt for all the possible inputs; however, this additional restricted condition cannot be
held in general restricted type X programs, like one in the proof of the Propositions 5.2 below.
Hence, to decide whether an arbitrary general deterministic computer program halts for
determined input (which is undecidable, by the Rice's Theorem [11]) cannot be reduced to SAT
as it does to XG-Poly-SAT (as demonstrated in this proof), and then any attempt to adapt my
proof to solve whether SAT is in P is condemned to fault.

See that if S is simulating a Boolean formula with n variables, then the Rice's Theorem
cannot be applied to the S behavior for any input, since it is restricted for all the possible ones.

Finally, suppose that else one tries to refute the proof saying:

“This proof follows a common theme: Defines an NP problem with a certain structure,

 15

argues that any algorithm that solves that problem must work in a certain way and any
algorithm that works that way must examine an exponential number of possibilities. But we
can't assume anything about how an algorithm works. Algorithms can ignore the underlying
semantic meaning of the input and focus on the syntactic part, the bits themselves.”

As in the previous “refutation” of my proof, the answer is also not complicated: If the
DTM Q ignores the underlying semantic meaning of w and focus on its syntactic part, the bits
themselves, considering w just a series of bits, this approach only places Q into the Way 2 –
where Q does not simulate the running of S at all (m = 0) –, and then the proof continues to
hold, naturally.

Shortly, the spirit of the proof is very simple: the XG-Poly-SAT is decidable by brute-
force search because whether S halts for at least one input from all the 2n possible ones is
decidable, whereas whether S halts for at least one from a nonempty proper subset of them is
in general undecidable, by Def. 2.1, which does that all the other ways to decide the XG-Poly-
SAT (without brute-force searching) be absolutely hopeless.

Consequently, we can say that one of the profoundest questions in Computational
Complexity Theory was solved by this plain ingenious characterization, the Def. 2.1!

Be brave and see below that all these four exhaustive ways to decide in deterministic
polynomial time the XG-Poly-SAT fail:

Way 1.i Q simulates the running of S for all the possible inputs (m = 2n):

The obvious way in order to the DTM Q to compute the time P(n) is to simulate one
step by time the running of S for all the 2n possible ones (in a breadth-first search, to avoid
running forever in a computation path that does not halt), counting the number of the steps in
each one of these paths of this simulation and waiting anyone to halt. Note that, by Def. 2.1, S
must halt in time P(n) for at least one input of any length. (After this, it suffices to simulate
the running of S for all inputs of length = n logn(P(n)) (in a breadth-first search), verifying
whether there is a result 1, in order to decide the XG-Poly-SAT.)

Nevertheless, this brute-force method, on worst case, can compute the time P(n) only
at the end of testing all these inputs, in time exp(n).

Notice that the advice function h(|w|) cannot help enough Q herein, in this step-by-
step simulation, in order to avoid brute-force searching, since h can encode only fixed
poly(|w|)-bounded quantity of information, whereas Q needs to treat eventually inputs for S
whose length is upper unbounded by any fixed poly(|w|), searching unavoidably exp(n)-
bounded (hence exp(|w|)-bounded) number (also upper unbounded by any fixed exp(n)) of
possible results from S, unfortunately.

Way 1.ii Q simulates the running of S for all the inputs from an arbitrary

nonempty proper subset of all them (0 < m < 2n):

Note that to simulate the running of S only for a polynomial number of arbitrary inputs
(or just for a number of them less than all the possible ones – for instance: nlog n) does not
work: Even the test of 2n – 2 inputs on the simulation cannot help to compute the time P(n) if
S does not halt for any simulated ones (in fact, this simulation cannot help to decide even
whether S simply halts for a specified input from these two ones).

Moreover, even the simple question whether S halts for at least one input from an

 16

arbitrary nonempty proper subset of the set of all the 2n possible inputs is undecidable, of
course, by Def. 2.1. (Obs.: This question is only decidable for the set of all these possible
inputs: The answer is always “True”, by Def. 2.1.)

Note again that the advice function h(|w|) cannot help enough Q herein too, by same
reasons from Way 1.i.

Way 1.iii Q simulates the running of S only for an input (or inputs) previously

computed (m = d < 2n):

Proposition 5.2. A DTM Q cannot compute, without simulating the running of S for
all the 2n possible inputs, a nonempty proper subset of ones, where S halts for at least one of
them, and then to simulate the running of S only for these inputs to compute the time P(n).

Proof. Let a well-formed string f be constructed with an arbitrary n, and let the
restricted type X program F be below, where Q was, by the Turing-Church Thesis, translated
into a computer program where it was included the instruction Simulated_by_Q[e] := True;
just before any instruction of this program that starts the simulation of F for any input e
(Simulated_by_Q is a global variable of type dynamic array or vector of Booleans values that
was initialized with False in all its positions).

We call Q’ to this program derived from Q. Verify that if Q runs in polynomial time,
then Q’ also do it, of course, and the behaviors and results from Q’ and Q are the same.

01. F(string input) { // F is a restricted type X program, since it returns 1 for at least one …
02. if (Simulated_by_Q[input]) do { input := “1”; } while (1 = 1); // infinite loop on d inputs
03. else return(1); // … input of any length, since Q’ does not simulate all the 2n ones
04. }

It is easy see that Q, simulating the running of S only for inputs previously computed
(not all them, of course, since d < 2n), cannot compute the time P(n) of F, since F does not
halt (line 02) for any input simulated by Q. Verify yet that Q cannot decide whether F halts
for any determined input, for this problem is undecidable, by the Acceptance Problem for
DTM. �

See once more that the advice function h(|f|) cannot help enough Q herein too, by
similar reasons from Way 1.i. Note also that it is not possible to put information upon h(|f|) to
help enough Q in order to it can decide whether Q(f, h(|f|)) = Q’ (f, h(|f|)), for example,
because this decision is independent of |f|, clearly.

Way 2. Q does not simulate the running of S at all (m = 0):

If the running time of Q depends on the one of the restricted type X program S into w
for some input (where if S does not halt for any input, then Q does not halt at all, too), which
occurs when Q acts reducing w into instance of another problem or simulating the running of
S, then the use of the diagonalization method in order to demonstrate that Q cannot decide the
problem fails, since Q does not have to be as restricted as S. But, as these running times are
independent ones in the special case treated herein, where w is considered just a bit string, or
Q decides whether S returns 1 for some input by engaging in more indirect reasoning about
the code of S, without simulating it at all, then we can use diagonalization in order to
demonstrate that Q cannot decide the XG-Poly-SAT. E.g., if Q converts a problem in E
without 2n/10-size circuits into a PRG which fools nc-size ones, for any fixed c, then Q is here.

 17

Note that if the running time of Q is anyway always greater than one of the restricted
type X program S into w for some input (where, remember, if S does not halt for any input,
then Q does not halt at all, too), then Q is, maybe indirectly, simulating the running of S for
this same input or reducing the instance of the XG-Poly-SAT constructed with S to instance
of another problem, of course. In general, to reduce within polynomial time an instance of the
XG-Poly-SAT is impossible, by the proof of the Proposition 5.1. We will see below that to
compute that time P(n) without simulating the running of S – or do it in a running time upper
bounded by a fixed (or even non-fixed) integer polynomial function of |w| – is impossible,
too.

Notice yet that if the program S into w must been only one specified, fixed and known
program, then the input to XG-Poly-SAT would be only n and we could encode the value of
the time P(n) in the function h, where h(n) = P(n) and Q would have this information within
polynomial [constant] time. However, S can be any program that complies with the Def. 2.1,
and the value of the time P(n) is entirely independent of the size of S, thus this value is
completely independent of |w|, hence is impossible that h helps Q on this computation, as
proved in the Proposition below:

Proposition 5.3. Is impossible to compute within deterministic polynomial time the
time P(n) of S for a given n without simulating the running of S at all, even with the help at
no cost of a poly-bounded advice function h.

Proof. Assume that Q can, using h, compute and return k on any instance w of the
XG-Poly-SAT, where k must be the running time of S into w for some input of length n (the
time P(n)). Then, let S into w be the DTM (computer program) below – note that, as Q is
supposed to be poly-time, S is really a restricted type X program:

01. S(input) {
02. k := Q(〈w, h(|w|)〉); // Q runs on an arbitrary instance w and returns k
03. execute (k+1000) arbitrary steps; // this diagonalization makes Q always …
04. if (k > 8000) return(0); else return(1); // … wrong when n = length(input)
05. }

Thus, as it is easily seen above, the diagonalization makes that the running time of S
into w is always greater than the result from Q, when n = length of the input. Hence, cannot
exist a poly-time DTM that, even freely using a poly-bounded advice function, returns the
running time of S into an arbitrary w on input of determined size.

Suppose, however, that Q could decide whether there is diagonalization into string Q.
In this case, Q could stay running forever, no returning anything at all, which would imply
that it would not be incorrect, because, in this case, S would not be restricted type X.

However, S can in general execute any arbitrary deterministic program. Hence, if Q
can decide whether there is diagonalization into S, then Q can decide whether a given
arbitrary deterministic program has a particular nontrivial behavior, which is undecidable, by
the Rice's Theorem; of course, for we can easily change this behavior into a string acceptance
testing to a formal language (reflect: replacing Q could be any computer program in the line
02). Hence, Q cannot decide whether there is diagonalization into S, lasting then condemned
to fault: to answer incorrectly the question, by the diagonalization above (line 03). �

Perceive that to state that Q answers whatsoever if and only if w is a well-formed
string does not work, because, as demonstrated in Section 3.3, L (the set of all well-formed
strings) is a non-RE language, which implies that Q cannot decide whether w is a well-formed

 18

string in order to decide accordingly whether it can answer anything without mistaking. That
is, in order to Q works in this case, it must assume absolutely that w is a well-formed string,
and then this assumption implies that it is really true, and that Q for the input w returns within
polynomial time incorrect answer, by the diagonalization above into S.

Observe that h(|w|) cannot do anything herein too, since the dilemma above is
independent of |w|, of course.

Observe yet that if the DTM Q decides the XG-Poly-SAT simulating the running of S,
then Q cannot run in time upper bounded by any fixed polynomial function of |w, h(|w|)| (in
fact, none TM – DTM or NTM – that decides the XG-Poly-SAT can do it), undoubtedly, by
Def. 2.1.

Conclusion:

As demonstrated above, all the four exhaustive possible ways to decide in
deterministic polynomial time, even provided at no cost with poly-bounded advice function
that depends only on the length of input, the XG-Poly-SAT fail: Consequently, there exists a
computational decision problem that can be decided in nondeterministic polynomial time, but
not in deterministic polynomial time, even provided at free computational expenses with
polynomial upper bounded advice function (or set of strings) dependent only on input size,
which implies NP ⊄ P/poly, naturally, in our sad computational world. �

For this reason, by union of the Rice's Theorem, the diagonalization method and the
complexity classes P/poly and NP, this proof is a beautiful unification and an amazing
synthesis between the Computability Theory and the Computational Complexity Theory, like
that one in [19].

 Lastly, someone can say that if a fixed and known polynomial p(n) ≥ time P(n) of the
program S into w is given (see this one is not deterministic poly-time computable, by
Proposition 2.1 in [24], neither can be encoded into h, since p(n) is independent of |w|,
clearly), then the instances of the XG-Poly-SAT can be reduced to Boolean formula ones by
Cook-Levin Theorem, and then if the SAT is decidable in deterministic poly-time, then the
XG-Poly-SAT is too. Big idea!

This conclusion is erroneous, however, since knowing a fixed p(n) ≥ that time P(n) is
unnecessary to decide the problem (the universal NTM in Section 4 and the universal DTM in
Way 1.i decide the XG-Poly-SAT without knowing this information (or without such an
input), naturally), proving that nondeterministic computation is fundamentally much more
faster than deterministic computation – even though it is freely provided with poly-bounded
advice function that depends only on the size of input –, and that the brute-force search is
unfortunately unavoidable in the real-world computations (I’m very sorry): To verify a correct
answer is definitely very easier than find it, naturally.

5.1 Running time of the functions into programs

About running in time P(n) and time greater than P(n), let the function be:

01. Poly_Function(string input) {
02. int i, counter := 0, n := length(input);
03. for i := 1 to n^10 { counter := counter + 1; } // poly(n) upper bounded running time
04. if (counter > 100) return(1); else return(0);
05. }

 19

The function above evaluated at string input is just a number, naturally. But we can
decide that its running time is poly(n) upper bounded, where n = |input|. We don't need a TM
to decide it. On the other hand, let the function be:

01. SuperPoly_Function(string input)
02. {
03. int i, counter := 0, n := length(input);
04. for i := 1 to 2^n { counter := counter + 1; } // exp(n) upper bounded running time
05. if (counter > 100) return(1); else return(0);
06. }

Of course, the running time of the function above is exponential in n. We know
countless functions as the ones above [2] to use them in order to make restricted type X
programs. Constructing restricted type X programs using algorithms with known running time
is human work, not TM computation [2].

5.2 Example of construction of an instance of the XG-Poly-SAT

Let the restricted type X program S be:

01. S(string input)
02. {
03. remainder := mod(integer(input), 2); // remainder on division of input (converted into
 // integer) by 2
04. if (remainder = 0) return(Fun2(input)); // returns the value returned by Fun2 and halts
05. if (remainder = 1) return(Fun1(input)); // never halts
06. }

07. Fun1(string input)
08. {
09. do { input := “1”; } while (1 = 1); // infinite loop
10. return(1);
11. }

12. Fun2(string input)
13. {
14. int i, counter := 0, n := length(input);
15. for i := 1 to n^10 { counter := counter + 1; } // poly(n) upper bounded running time
16. if (counter > 0) return(1); else return(0);
17. }

Thus, we can simply convert this program S into a DTM M, translate it into a binary
form s, and then construct the well-formed string w = 111111110s, an instance of the XG-
Poly-SAT. Herein, constructing XG-Poly-SAT instances, it stands very clear that the human
reasoning is much more powerful than mechanical (TM) computation.

6. Baker-Gill-Solovay Theorem and the Proof

 Verify that the proof does not use the diagonalization method (except in the justified
special cases in Section 5) and it is based about the difference, on worst cases, between
running times from a DTM and an NTM that recognize the Lz-language L, as demonstrated in
Way 1.i of Section 5 compared to Section 4.

 20

Moreover, notice that the addition into the proof methods of oracles to a PSPACE-
Complete language W does not imply that false statement PW ≠ NPW (because the proof cannot
be adapted to demonstrate that PW ≠ NPW, since a DTM Q with an oracle to W could simulate
any NTM with the same oracle using only a poly(n)-quantity of space, in an adapted Way 1.i,
which would otherwise prove that PW = NPW).

These facts imply that the Baker-Gill-Solovay Theorem of inseparability of the classes
P and NP by oracle-invariant methods (techniques that are conserved under the addition of
oracles, like the pure diagonalization method without algebraic oracle [8]) does not refute this
NP ⊄ P/poly proof. In other words, my proof technique does not relativize [4].

7. Razborov-Rudich Theorem and the Proof

SAT's weakness – The proof does not try to prove any lower bounds on the circuit
complexity of a Boolean function, because it does not try to solve the still open question
whether SAT is in P, since to prove NP ⊄ P/poly it was not necessary to solve the SAT
question (for the proof, different from the wrong conclusion in [3, 6], it is irrelevant whether
SAT is in P), whereas it was enough to prove that XG-Poly-SAT is in NP but not in P: Thus,
the Razborov-Rudich Theorem of the Natural Proofs does not refute this proof. In other
words, my proof technique does not naturalize [7].

8. Related Work, Aaronson-Wigderson Theorem and the Proof

There is no relevant related work on the goal to really solve the NP versus P/poly
question. From important papers upon the matter, there are only some “negative” results, like
the ones referred to in Sections 6 and 7 and, more recently, as an extension of the
relativization in Section 6, the proof that techniques that are conserved under the addition of
an oracle and a low-degree extension of it over a finite field or ring cannot work on this
question too, by the concept of algebrization, explained in [8].

Remember, however, that my proof does not use the pure diagonalization method (as
referred to in Section 6), but it exploits properties of computation that are specific to real
world computers, and then this new barrier is not valid to refute it, too.

9. Expert Advice & Academic Honesty

A reviewer, referring to the technical report in [15], has said “– It is disconcerting to
see how the present author continues to ignore expert advice. His title borders on, and perhaps
transgresses, academic honesty. Papers with such grandiose claims should only be considered
after an endorsement by an expert.”

The heart of my paper is just challenging some traditional definitions on TCS field,
essentially the need of poly-uniformity on the definitions of the classes P/poly and NP. But
that technical report says, for instance: “– As ... Definition 3.5 of his paper ... needs to before
the universal quantification on x fix a polynomial bounding the length of the certificates, we
from here on assume that his definition is viewed as being modified to do that ...”

So, as my proposed new definitions are so distorted in that expert advice, it has very

low value in order to evaluate my proof, thus ignoring it is not really academic dishonesty at
all, but only logical consequence of that challenge upon enhancing those definitions.

 21

10. Freedom & Mathematics

 “– The essence of Mathematics is Freedom.” (Georg Cantor) [23]

11. References

[1] J. E. Hopcroft, J. D. Ullman, and R. Motwani, Introduction to Automata Theory,
Languages and Computation, Addison-Wesley, Reading MA, 2001.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms

(Second Edition), The Mit Press, Cambridge MA, 2001.

[3] K. J. Devlin, The Millennium Problems: The Seven Greatest Unsolved Mathematical

Puzzles of Our Time, Basic Books, New York NY, 2002.

[4] M. Sipser, Introduction to the Theory of Computation – Second Edition, Thomson

Course Technology, Boston MA, 2006.

[5] Adapted from the appendix of the paper Uniformly Hard Sets by L. Fortnow and R.

Downey, unpublished, available: http://weblog.fortnow.com/media/ladner.pdf

[6] Cook S.A., “P versus NP problem”, unpublished, available:

http://www.claymath.org/millennium/P_vs_NP/Official_Problem_Description.pdf

[7] From Wikipedia, the free encyclopedia, “Natural Proof”, unpublished, available:

http://en.wikipedia.org/wiki/Natural_proof

[8] S. Aaronson and A. Wigderson, Algebrization: A New Barrier in Complexity Theory,

Electronic Colloquium on Computational Complexity, Report No. 5 (2008), available:
http://eccc.hpi-web.de/eccc-reports/2008/TR08-005/Paper.pdf

[9] O. Goldreich, On Promise Problems (in memory of Shimon Even (1935-2004)),

unpublished, available: http://www.wisdom.weizmann.ac.il/~oded/PS/prpr.ps

[10] M. Sipser, Cambridge MA 02139, in The History and Status of the P Versus NP

Question, p. 606, unpublished, available:
http://www.seas.harvard.edu/courses/cs121/handouts/sipser-pvsnp.pdf

[11] From Wikipedia, the free encyclopedia, “Rice's Theorem”, unpublished, available:

http://en.wikipedia.org/wiki/Rice's_theorem

[12] O. Goldreich, Notes on Levin’s Theory of Average-Case Complexity, unpublished,

available: http://www.wisdom.weizmann.ac.il/~oded/COL/lnd.pdf

[13] A. L. Barbosa, P != RP Proof, unpublished, available:

http://www.andrebarbosa.eti.br/P_different_RP_Proof_Eng.pdf

[14] From Wikipedia, the free encyclopedia, “P versus NP Problem”, unpublished, available:

http://en.wikipedia.org/wiki/P_versus_NP_problem

[15] L. A. Hemaspaandra, K. Murray, and X. Tang, Barbosa, Uniform Polynomial Time

Bounds, and Promises, Technical Report, unpublished, available:

 22

http://arxiv.org/abs/1106.1150

[16] From Wikipedia, the free encyclopedia, “Decision Problem”, unpublished, available:

http://en.wikipedia.org/wiki/Decision_problem

[17] T. S. Kuhn, The Structure of Scientific Revolutions, University of Chicago Press,

Chicago IL, 1962.

[18] From StackExchange (cstheory), cc-wiki, “Are runtime bounds in P decidable?

(answer: no)”, unpublished, available:
http://cstheory.stackexchange.com/questions/5004/are-runtime-bounds-in-p-decidable-
answer-no

[19] A. L. Barbosa, P != NP Proof, unpublished, available:

http://arxiv.org/ftp/arxiv/papers/0907/0907.3965.pdf

[20] From Computational Complexity, blog, “P/poly”, posted at September 07, 2005, by L.

Fortnow, unpublished, available:
http://blog.computationalcomplexity.org/2005/09/ppoly.html

[21] From Wikipedia, the free encyclopedia, “Zermelo-Fraenkel Set Theory”, unpublished,

available: http://en.wikipedia.org/wiki/Zermelo-Fraenkel_set_theory

[22] From Wikipedia, the free encyclopedia, “Constructible Function”, unpublished,

available: http://en.wikipedia.org/wiki/Constructible_function

[23] From The Engines of Our Ingenuity, site, “Episode nº 1484: GEORG CANTOR”, posted

by John H. Lienhard, unpublished, available: http://www.uh.edu/engines/epi1484.htm

[24] A. L. Barbosa, The Cook-Levin Theorem is False, unpublished, available:

http://www.andrebarbosa.eti.br/The_Cook-Levin_Theorem_is_False.pdf

[25] From Gödel’s Lost Letter and P=NP, a personal view of the theory of computation,

blog, public comments on “Facts No One Really Checks”, posted at July 25, 2012, by R.
J. Lipton, unpublished, available: http://rjlipton.wordpress.com/2012/07/25/facts-no-
one-really-checks/#comment-22187

[26] A. L. Barbosa, What is the Size of the Hilbert Hotel's Computer?, unpublished,

available:
http://www.andrebarbosa.eti.br/The_Size_of_the_Hilbert_Hotel_Computer.pdf

[27] A. L. Barbosa, The Randomness Delusion, unpublished, available:

http://www.andrebarbosa.eti.br/The_Randomness_Delusion.pdf

[28] A. L. Barbosa, The Dead Cryptographers Society Problem, unpublished, available:

http://arxiv.org/ftp/arxiv/papers/1501/1501.03872.pdf

[29] J. Abascal and S. Maimon, Critique of Barbosa’s “P != NP Proof”, unpublished,

available: https://arxiv.org/pdf/1711.07132.pdf

André Luiz Barbosa – Goiânia - GO, Brazil – e-Mail: webmaster@andrebarbosa.eti.br – August 2011

Site....….. : www.andrebarbosa.eti.br
Blog...….. : blog.andrebarbosa.eti.br

 23

This Paper : http://www.andrebarbosa.eti.br/NP_is_not_in_P-Poly_Proof_Eng.htm
PDF…..… : http://www.andrebarbosa.eti.br/NP_is_not_in_P-Poly_Proof_Eng.pdf

