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1. Introduction

The Four-Color Theorem (4CT) %6 7lis a very beautiful discovery, embraces very
deep math with innocent appearance, and furtherimsean epic and passionate history.

Circa a century and two decades since it was ctmgd, finally its computer
program-based proof was amazing (and even a temtjical feat in the 197083 4,
However, as this proof — even though it was highdyeloped latel® 1% — is yet so very long
and composed of separated pieces through excngidttails, it is still no amenable to
complete human verificatioff!

This little paper presents a very shorter and ssmptoof susceptible to fully human
verification and total understandifd' (an overview of the proof is presented in Sec8jn

A reviewer has asked me: “— What is the new kew ittat allows us to get around
looking into all these many different configuratsotihat the existing proofs test for?”

The new key idea here is to see a map not as foohe@dssiblyso many different



configurations but simply see it as formed e$sentially only two closed curvegerlapping

in a plane: then, all the regions from the map caly be in exactly a single position with
respect to these two curves, from four possibléapt out of them, inside of them, out of one
and inside the other, or out of the other and msiee one, which naturally generates the four
colors that they can be colored, without adjacegitans having the same color, since crossing
a boundary from the map must necessarily change @néhe two, from the out/inside
positions. Consequently, adjacent regions cannet ltlee same position — equivalently, the
same color — with respect to the two original [gtlosed curves.

Hence, as only four different positions are possilith respect to these two (set of)
closed curves (out-out, out-in, in-out, in-in), Wfe prove that any arbitrary hypothetical
minimal counter-example to 4CT can always be fornbydmeans of this overlapping
construction (hence, by contradiction, thgpotheticalminimal counter-example cannot exist
as areal counter-example), then the 4CT stands provedRdnjuctio ad Absurdum
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Closed Curves that Do Not Intersect Act as a Single Closed Curve

‘Where Only Two Colors Are Sufficient To Properly Color Them

Figure 1.1 Example 1 of Closed Curves Representing the Kewldea Used in the Proof

(202963

Closed Curves that Do Not Intersect Act as a Smgle Closed Curve
‘Where Only Two Colors Are Sufficient To Prnperh Color Them

Figure 1.2 Example 2 of Closed Curves Representing the Kewldea Used in the Proof

With respect to two figures above, we can inteityvsee that a resultant map from
overlapping two [no intersecting or disjoint se{l ofosed curves can always be properly
colored with only four different colors: All its geons can be colored with one from the four
ones: green-green (1), green-yellow (2), yellonegrg3) or yellow-yellow (4) according to
respective colors of original regions from two poas (set of) closed curves.

1.1 The Global Structure of the Proof
The global structure of the proof is constitutéthe following six sequential steps:

) Defining2-DSCC_M4-CM, 3-ECC CBGand related objects.
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i) Proving tha-DSCC_Mis equivalent t@-CM: 2-DSCC_ M= 4-CM.

i) Defining 3-ECC and noting that everg§-ECCis a4-CM, and a2-DSCC_M
too: (a known result, reall3-ECC= 4-CM, and s3B-ECC= 2-DSCC_N.

iv) Observing that an arbitrary hypotheticadinimal CBG that is a counter-
example to the 4CT would beGBGN (an arbitraryminimal counter-example
to the 4CT that is (or is converted intofBG) that has a pentagon inside it.

V) Proving that the resultant map when that pentagon is removed fravh is a
2-DSCC_Mand a3-ECCtoo, beyond to be &4 CM (sinceN is minimal).

Vi) Proving after all that we can, however, return tipghtagon to mapC
generating newly tha€BG N, and then proving it is really&ECC hence &-
CM, therefore proving thalN was not really aminimal counter-example to
4CT, then such minimal counter-example cannot exist, hence proviag.

2. A Human-Checkable Four-Color Theorem Proof

Definition 2.1. Disjoint Set of Closed Curves@SCQ. A DSCC s a finite set of
disjoint oriented closed curves [either simplrflan curvg or non-simple ones] in a
Euclidean plané®, where there is no intersection point between aiy of them — that is,
they do neither cross, nor intersect, nfmuthH themselves in that set. The empty set and a
unitary set of a simple closed curve are triviaigCC

More formally: Let |1, ...,In be nonempty intervals of reaR®, and Ci: 11— R?, ...,
Cn: In — R? be continuous mapping, whdre= [a;, bi], bi > a;, (Ci(x) = Ci(y)) A (X#Y) only in
finitely manyx, Ci(a) = Ci(bi), Vi, 1<i <n, {Cy, ...,Cn} is a DSCCiff Ci(x) =Cj(y) =i =],
vi,j, 1<i,j<n.

Definition 2.2. DSCC Winding Number (DWN). The DWN of every point X, y)
inside a Euclidean plane where the respedi&CCis drawn is the algebraic sum of all
absolute values of the@inding numbergas defined in [4, 8]) of that point with respéatall
curvesC; from thatDSCC(so, the orientations of the curves of B®CCdo not matter at all).
Note that every arbitrary point of a Euclidean pldras a determined, fixed and effectively
calculable winding number with respect to a detagdioriented closed curve, so a DWN too,
with respect to a giveDSCC DWN(x, y) =3 |winding numbety, y, C)|.

Definition 2.3. Points inside and outside with resgct to aDSCC Every point &, y)
inside a Euclidean plane with respect toD8CC (where it is in) can be exactly and
exclusively in only one of the following position:

(i) Outside from the DSCUf its respective DWNs even [2 DWN(X, y)];
(ii) Inside from the DSCGHf its respective DWN is odd [RDWN(X, y)]; or
(i) Inside the image of some curve of tASCC(when DWNK, y) is undefined).

Definition 2.4. Regions inside and outside from &SCC An arbitrary regiorR (a
contiguous portion of surface that does not cordaiy point from any curve) in a Euclidean
plane where &SCCis drawn can be exactly and exclusively in onle af the following
position: (Obs.: Some few small parts of the praraf visual — using geometric intuition —, but
their truth are so obvious that they do not neeth& combinatorics demonstrations in these
few cases.)

(i) Outside from the DSC@f some pointX, y) € Ris outside from thaDSCGC or
(i) Inside from the DSCGff some pointX, y) € Ris inside from thaDSCC
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Note All the points from a specified region must hate same DWN, since the
winding number of a continuously moving point wigsspect to some closed curve changes
only if that point crosses (intersects) that closadve.[* 8 Thus, as in a region there is no
point from the curves, the DWN of all its point® &qual each other. Furthermore, by Def.
2.2, every region into a Euclidean plane has arated, unique, fixed and effectively
calculable positioniisideor outsidg with respect to a giveRSCC

Verify that the definitions obutsideandinsideabove can be swapped without altering
the essence of the proof in this paper.

Definition 2.5. 2DSCC Map (2-DSCC M). A 2-DSCC_M s a connected finite
simple planar graph that can be represented (drawhyo DSCGC where we can call them a
Blue DSCCand aYellow DSCQwhich can be considered formedhdfie andyellow closed
curves, where curves of different colors tanch(have common points with) themselves, but
the curves of same color cannot do it, by Def..2.1)

Note yet that &©SCCin this definition can be the empty set, and, iR-RSCC M,
regions (countries), boundaries (borders, sidegy aertices (points where different
boundariegsouchthemselves) can be represented by faces, edgds)(aad vertices (set V)
in a finite simple planar grapi = (V, E), respectively (where all the edges frdvncan be
represented byi.e= {vi, vj}, where v, v; € V and {v, vj} € E).

Definition 2.6. Blue, yellow and green edges (boumades). In a 2DSCC M
represented by a finite simple planar grapk (V, E), every edgesj representing a boundary
formed only by a blue (respect., yellow) curve iblae (respect.yellow) edge and every
edge e representing boundary formed by an intersectioradflue and a yellow curve
(overlapping infinitely many points) isgrteen edgeThese occurrences can be represented by
the predicateB(e,) (respect.Y(e.)) andG(ex.), respectively.

In order to formally include these colors to thepsiawe shall introduce two new
planar graphs8 = (V, Ep), andY = (V, Ey), where a blue (respect., yellow) edge will be
represented bywa; = {Vbi, Wi} € Ep (respect., @y = {vyk, Wi} € Ey), and a green edge is
defined as one that is in these two graphs at game (&b and §.yj), linking the same
points v and y (where vi = wi = Vi, Vvi € V, andEp U Ey = E).

Lemma 2.2.Every edge of 2-DSCC_Mis either a blue, yellow or green edge.
Proof. In a 2-DSCC_Mthere are only blue and yellow curves, and evegnent

where they intersect is (must be) green (reprasgran overlap of the two curves). Hence,
can there be only blue, yellow and green edgesn(taries) in 2-DSCC_M [

The 4 Colors = 00, 01, 10 and 11 [Regions outside (inside) from C1 can be colored with 00 or 01 (10 or 11), and outside (inside) from C2 can be it with 00 or 10 (01 or 11)].

® ]

Outside from C1 Outside from C2
Color Mask = 0X 1X Color Mask = X0 X1
Inside from C1
. 4+ o
DWN =
1 DWN = DWN=0
1
] DWN=0 [ ® L
Inside from C2
9 ® @
Blue DSCC C1 Yellow DSCC C2 C1+ C2 = 4-Colored Map with 5 Regions

Figure 2.1 Example of How 2 Closed Curves form a 4-Colqi@d3-Edge-Colored) BSCC M
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More formally, the2-DSCC_Min the Fig. 2.1 can be representedvby= ({v1, \2, Vs, V4, s,
Ve}, { En1-b2 @3-bs E5-b6 §1y5 62-y3 4-y6 Eyl-g3 Ey4-g5 €y2-ga)-

Lemma 2.3.All regions R are exclusively either inside or outside from eacdk of
the twoDSCCof a2-DSCC_M (more formally, eitheRi(Blue DSCQ = Inside or Outside
and eitheR(Yellow DSC¢= Insideor Outsidg.

Proof. All the points from a specified region must have game DWN, since the
winding number of a continuously moving point witsspect to some closed curve changes
only if that point crosses that closed curie®! Since the intersection of a region with the
curves from &2-DSCC_Mis an empty set, this region is exclusively eitimside or outside
each curve from th&-DSCC_M by Def. 2.4:

(X1, Y1), (X2, ¥2) € R = DWN(X1, y1) = DWN(X2, y2). LI
Definition 2.7. Four-colorable map (4-CM).A 4-CM is a4-colorable planar map
(connected finite simple planar graph), that ip)Jamar map where at most four colors suffice
to color it without adjacent regions having the sasulor.[* 16 171

Lemma 2.4.Every2-DSCC_Mis also a4-CM.

Proof. We can color the regions in aByYDSCC_Mas indicated in the table below:

Is the Region Insid|Is the Region InsidkCoIor the Regio

theBlue DSCC | theYellow DSCQ | With the Color:
No No 00 (m)
No Yes 01()
Yes No 10 (m)
Yes Yes 11 (m)

Table 2.1 How to properly 4-color 2-DSCC_Maccordingly regions’ positioning

Thus, within the Table 2.1, since there are in2HBSCC_Mtwo DSCC and all the
regions from the map are either inside or outsashecurve, by Lemma 2.3, four colors are
sufficient in order to color that map, in genera§ though each region inside (respect.,
outside) theBlue DSCChad a color maskX (respect.0X), and each region inside (respect.,
outside) theYellow DSCChad a color masK1 (respect.X0), where the color of that region
is like the composition of these two masks, as showthe Table 2.1. But with only four
colors, couldn’t there be two adjacent regions Witk same color? We shall see below that
this flaw cannot occur:

If two adjacent regions had the same color, therptisition of those regions would be
the same one with respect to tR&CC but this is impossible, since in order to crdss t
edges of the map we can only cross either exacottyldue or exactly one yellow curve, or
exactly two ones at same time (when crossing angeelge), exactly one of each color, by
Def. 2.1 (remember that the blue (respect., yellowyes of aDSCCcannot have common
edge, that is, infinitely many overlapped pointsnty finitely many [isolated] ones — with
themselves); that is, when we intersect (cross@dge, moving us from a region to another
one, we must change at least one of the answers Table 2.1 (fromNo to Yesor fromYes
to No) with respect to the incoming region, by Def. 2is, it is impossible that two adjacent
regions have the same set of those two positioaimgwers in that table above, so it is
impossible those two adjacent regions have the saitoe.
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Hence, the coloring of the map by means of the &kl guarantees that there is no
adjacent region with the same color, so at most éolor suffice to properly color eved+
DSCC_M thus, ever2-DSCC_Mis also a4-CM. [

Lemma 2.5.Every4-CMis also &2-DSCC_M

Proof. This proof is constructive, since we shall dematstthat we can construcka
DSCC_Mfrom every4-CM properly 4-colored.

See, from any}-CM properly 4-coloredV, we can decide which regions in it are
either inside or outside each curve of a supp@sP&CC_M as indicated in the table below:

Color of the Region I||1 Is the Region Insidgls the Region Insidg
M theBlue DSCC | theYellow DSCC
00 (m) No No
01() No Yes
10 (m) Yes No
11 (m) Yes Yes

Table 2.2 How to position regions inZ2DSCC_Maccordingly their coloring

Thus, theBlue DSCGs formed by all edges adjacent to regions colevid color 10
(m) or 11 (@), when they are also adjacent to regions coloriéd some color from the other
two ones, 00) or 01 ( ), and theYellow DSCGQs formed by all edges adjacent to regions
colored with color 01 ) or 11 (m), when they are also adjacent to regions colorigd seme
color from the other two ones, Of)or 10 ().

Then, from the table above, we can decide whiclregdg every4d-CM properly 4-
colored form each curve of that suppodSCC_M as indicated in the table below:

Edge Adjacent to Two | Is the Edge in thg Is the Edge in the
Regions Colored With: Blue DSCC Yellow DSCQ
00 (m)|01() No Yes
00 (m) |10 (@) Yes No
00 (m) |11 (m) Yes Yes
01()|10 @) Yes Yes
01( )11 @) Yes No
10 (m) | 11 (m) No Yes

Table 2.3 How to decide belonginess of edges w.r.t DB Csaccordingly their adjacency

Proposition 2.1.In order to construct thBlue DSCCof the mapM, we can make a
new mapM’ simply excluding from the origind-CM all the edges that are not in tlRSCGC
that is, those ones that are adjacent to two regioiored with 00%) and 01 { ), and those
ones that are adjacent to two regions colored Mi{m) and 11 @), coloring the resultant
regions ofM’ with 00 (m) or 10 @), accordingly they encompass regions frivhcolored
with 00 (m) and/or 01 {), or with 10 @) and/or 11 @), respectively. Therefor®)’ turns out
to be a map proper-colored And all map (where the edges form closed cursiese there
IS no cut edges) of this type can be considerB&&C with the regions colored with a color
representing regions outside of thaSCC and the ones colored with the other color
representing regions inside of th&CC



Proof. Excluding the edges adjacent to two regions cdlergh 00 @) and 01 [ ), or
10 (m) and 11 @) from the mapM, and maintaining the other ones, is equivalermgjeioerate
a mapM’ with only two types of regions: the 00-01 and tle1l ones, that we can color
with (m) and @), respectively, wher®!’ is properly2-colored since it is impossible that two
regions of same color are adjacentMn, for in order to this fact occur we would need
maintain inM’ at least one edge adjacent to two regions colmtd00 (m) and 01 {), or
10 (m) and 11 @), which is not permitted, by Proposition 2.1:

Map M Map M’

——
— —
Example of a Wrong Way to Construct the Map M" from W

The Blue DSCC

Figure 2.2 Example of HowNOTto Construct 8lue anda Yellow DSCdrom a 4-CM

In order to illustrate the construction above, thed those remaining edgesht form
at least one closed curve, since all the verticas fa2-colorable map must have an even
degree (otherwise, it could not K&colorablg, therefore they must form one or more
Eulerian cycles® 16 lwhich can be represented by a set of disjointeclosurves (since
Eulerian cycleseither pass by any edge of the map more than ooceross other edges, so
those closed curves do not cross other ones, apélyinDef. 2.1). Then, we can call this set
of curvesthe Blue DSC®f the map. Similarly by symmetry, swapping thiesoof the colors
10 (m) and 01 {) in the above argument, we see that the same ggat®ll buildhe Yellow
DSCCof the2-DSCC_M

Notice yet that all the edges of th&CM M must be in som&®SCC since the
conditions that the edges must obey when formirny) eae of the twdSCCsexhaust all the
edges in the map (the edges excluded in the foomatf aDSCCare not excluded in the
formation of the other one, and vice versa, thlighal edges of the map shall eventually
participate (must do it) in the formation of soDd8CC after all):

c)-[C]

The Original 4-C}M Can Be Represented As 2 DSCC: The Blue DSCC The Yellow DSCC

Figure 2.3 Example 1 of How to ConstructBiue anda Yellow DSCdrom a 4-CM
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The Original -CM Can Be Represented As 2 DSCC: The Blue DSCC The Yellow DSCC

Figure 2.4 Example 2 of How to ConstructBdue anda Yellow DSCdrom a 4-CM
Hence, by the construction above, ev&§@M is also &2-DSCC_ML]

So, by Lemmas 2.4 and 2.5, we can conclude hBXSCC_Mand 4-CM are
equivalent definitions, representing the same aéssaps, with the same coloring properties.

Lemma 2.6.The quantity of blue (respect., yellow) plus greelges incident to every
vertex from a2-DSCC_Mmust be even. R-DSCC_Mcolored in this way is callegroperly
edge-colored

Proof. As all the curves from an arbitraBSCCare closed curves, by Def. 2.1, and all
green edges represent overlap of two edges (bldeyeiow ones), the quantity of incident
blue (respect., yellow) plus green edges on everjex of an arbitrary 4-CM is (must be)
even, for the edges in eaBliCCalways occur in pairs at the vertices, one incgrand
other outgoing w.r.t. each vertex of t2aDSCC_MU[]

Corollary 2.1. Every 3-degree vertex from2DSCC_Mproperly edge-colored can
only have their three incident edges colored witlepyellow and green (where the order
does not matter), that is, all its vertices areprty 3-edge-colored ones.

Definition 2.8. CBG. A CBG is a connected finite simple planar cubic bridgsle
graph (or a cubic polyhedral maf§) 1 7]

Definition 2.9. 3-ECC. A 3-ECC is aCBG that admits d ait coloring (a proper 3-
edge coloring)® 16171

Definition 2.10. Blue-green, yellow-green and blugellow chain. A blue-green
(respect. yellow-greenor blue-yellow chainis a cycle in &-DSCC_Mthat contains only
blue (respect., yellow) and green (respect., yelleslges. Note that it is allowed that there are
adjacent edges with the same color in that cychefwhe map is not cubic).

Definition 2.11. Local inversion of colorsA local inversion of colorss swapping a
color for another in all the edges in a [blue-greeilow-green, or blue-yellow] chain.

Lemma 2.7.1f two edges are in a blue (respect., yellow) sengycle (closed walk
without repetitions of vertice$) of a curve of SCCfrom a2-DSCC_Mand are incident to
the 5-edged verteX, where all the other vertices of tlADSCC_Mare 3-edged, then there is
a blue-green (respect., yellow-green) chain comtgithese two edges in thaDSCC_M

Proof. As all the curves from an arbitrafSCC are closed ones, and all the green
8



edges represent overlapping of a blue and a yedidges, then when we walk at that blue
(respect., yellow) simple cycle, all the edges thatcan pass by (only once, for all the others
vertices are 3-edged, bA) are either blue (respect., yellow) or green e@igeen that blue
(respect., yellow) curve intersects a yellow (respdlue) one at infinitely many points), that
is, we are walking only upon blue (respect., ye)lamd green edges, where this closed
walking forms a blue-green (respect., yellow-gregngin, starting i\ and returning to it_]

Notice that in general the blue-green (respectlpwegreen) chains herein can have
adjacent edges with the same color, by Def. 2.8jrba 3-edge properly coloré4ECCthis
IS not possible, where every adjacent edges must hernating color, since otherwise
would be two edges with the same color adjacersiotae properly 3-edged-colored vertex,
which is not possible, by Corollary 2.1.

Lemma 2.8.Every3-ECCis also &4-CM.
Proof. By CBGs Tait coloring, everg-ECCis also a-CM [10:16. 171 ]

See that we can get2aDSCC_Mfrom a3-ECCsimply considering all its blue-green
(respect., yellow-green) chains as blue (respgeligw) curves, so obtainingzDSCC_M

Corollary 2.2. Every3-ECCis also a2-DSCC_M(3-ECC = 4-CM < 2-DSCC_M
hence3-ECC= 2-DSCC_M), by Lemmas 2.4, 2.5 and 2.8.

Theorem 2.1. Four-Color Theorem (4CT).Every connected finite simple planar
graph is a-CM. [t 16171

Proof. As very well known, 4CT is equivalent to the Thear2.2 below” 11 16. 17
Theorem 2.2. Three Edge-Coloring Theorem (3-ECTEveryCBGis a3-ECC

Therefore, we shall prove the 3-ECT, hence the.4&0T as it is well known too, since
every finite map that has no region completely@umded by another region can be converted
into a cubic map, an arbitrary hypothetiocahimal CBGthat is a counter-example to the 4CT
(and to the 3-ECT too, naturally) would bEBGN that has a pentagon insidet!’}

Thus, the resultant map when that pentagon is removed frdiris a4-CM, sinceN
is hypotheticallyminimal as shown in the sequence of Figs. 2.5, 2.6 aht&low (for ifC’
in the Figure 2.5 belowd’ = N without an arbitrary edge from that pentagon] waisa four-
colorable map, then it would beGBG C’ that is a counter-exampsenaller tharN, which is
impossible, adl is aminimal one, by hypothesis); s@,is also &2-DSCC_M by Lemma 2.5:

Obs.: The External Parts of the Maps (not Shown Here) Are Equal
(There Are Only 3-Edged Vertices)

Es

Part of the Cubic Map N Part of the Cubic Map C'
Hypothetical Minimal Counter-Example to 4-CT (Not Four Colorable) A 4-CM (Four Colorable), So, a 2-DSCC_M Too

Figure 2.5 A hypothetical minimaCBGthat is a counter-example to the 4CT can origiaadealle3-ECC
9



Verify above that, aBl is a cubic map, the@’ is a cubic map too:

Obs.: The External Parts of the Maps (not Shown Here) Are Equal
(There Are Only 3-Edged Vertices, Except A)

Part of the Map C
A 4-CM (Four Colorable), So, a 2-DSCC M Too

Part of the Cubic Map C'
A 4-CM (Four Colorable), So, a 2-DSCC_M Too

Figure 2.6 Demonstration that from ttf&2ECCC' we can create tH2DSCC_MC

Then, joiring the two previous figures, we reach the resednsin the Fig. 2.7 below, where
from that mapN we construct tha2-DSCC_MC (thatis not a cubic map, unlike of tha&tECC
C’), with that pentagonal face contracted:

Obs.: The External Parts of the Maps (not Shown Here) Are Equal
E1 (There Are Only 3-Edged Vertices, Except A)

Part of the Map C
A 4-CM (Four Colorable), So, a 2-DSCC_M Too

Part of the Cubic Map N
Hypothetical Minimal Counter-Example to 4-CT (Not Four Colorable)

Figure 2.7 Demonstration that from a hypothetical minimalioter-example we can creatg-®SCC_M

In the resultan2-DSCC_MC at the right in the Fig. 2.7 (note thaRdSCC_Mdoes
not need to be cubic, by Def. 2.5), the quantityblofe (respect., yellow) plus green edges
incident to the verteA must be even (by the Lemma 2.6), where the onantities allowed
are 3-1-1 (one color appears three times and therotonly once), as demonstrated by
exhaustion in the table below, whereepresents an arbitrary permutation of thosedulges:

Es) Es) Es) Esq) Es(s) Qty. Blue | Qty. Yellow Allowed?
Blue Blue Blue Blue Blue | Odd (5) Even (0) No
Blue Blue Blue Blue Even (4) Odd (1) No

... NO ...
... NO ...
Blue Blue Blue Green | Even (4) Even (2) Yes
Blue Green | Even (2) Even (4) Yes
Blue Green Green Green| Even (4) Even (4) Yes

Table 2.4 Quantities Allowed of Colored-Edges Incidentshe VertexA of the MapC in the Fig. 2.8

We shall analyze only the case with three blue £dgee green and one yellow, since
the other cases are only permutations of thosergoleading to the same results, by

symmetry (rotation or reflection of the map, orlgdbinversion of some pair of colors).
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Definition 2.12. TBCI Map. A TBCI mapis as thalC shown in the Fig. 2.8, where
those three blue edges are contiguously inciderthéovertexA (that is, we can draw a
continuous line crossing all these three edgesowtthrossing any other edge from that map).

This definition is general, embracing all the pbksicases where three edges with the
same color are contiguously incident to that veAexip to the colors and their positioning.
Then, in aTBCI mapwe can create a new region expanding that vekiepeturning to the
original mapN, but now proving that it is really 2ECC as shown in the Fig. 2.8, so that
mapN is really a4-CMtoo, by Lemma 2.8, hence in this case it cannadbeally a minimal
counter-example to the 4CT. We shall see morelddialow:

Well, as all the vertices from that mé&p except the verteA, are properly 3-edge-
colored, by Corollary 2.1, then when we includet thew region expanding the vertéx we
demonstrate that that m&pis also a3-ECC as the five new vertices replacing the vertex
are also all properly 3-edge-colored (see it at Zig), and all the remaining verticeshfare
so too, because the external pariNok equal to the external part Gf(even though they are
not explicitly shown in the figure below):

Obs.: The External Parts of the Maps (not Shown Here) Are Equal
(There Are Only 3-Edged Vertices, Except A) E

Es

E2

Part of the Map C Part of the Cubic Map N
A 4-CM (Four-Colorable Map) Contradiction: the "Counter-Example™ IS a Four-Colorable (3-Edge-Colorable) Map

Figure 2.8 Demonstration that a supposed minimal countarmte () is NOT really a counter-example

So, since we can delete a region from the MNaphen properly color that resultant
map C with only four colors, and then return that regtorN, generating 8-ECC so also a
4-CM, by Corollary 2.2, this process proves that thgimal mapN cannot be a true minimal
counter-example to the 4CT, which yields a conttaal, for our hypothesis is that is so.
Consequently, the initial assumption tl@atis a TBCI mapis (must be) wrong, in order to
maintain our hypothesis (even though this is teraporas we’ll see it below). Therefore, that
4-CM mapC is not aTBCI map hence it must be like ones shown in the Fig. 2.9:

Obs.: The External Parts of the Map Are Not Shown Herein Obs.: The External Parts of the Map Are Not Shown Herein

Part of the Map C Part of the Map C

‘ These Two Maps are Topologically Equal, Where Just the Colors Blue and Green Were Swapped ‘
|

Figure 2.9 In order toN can be a minimal counter-example to the 4CTust have this kind of coloring
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So, two possible topologies (structures or confdiong) of the blue curve from that
mapC (where the edges:FEs and & are blue, Eis green, and &Hs yellow [alternatively, if
Ei, Es and & are green (respect., yellow); 5 blue (respect., green), and E yellow
(respect., blue), we swap the colors blue and giespect., yellow), generating a map whose
topological analyses would be identical to that eve shall do w.r.t. that mag]) are
represented in the Fig. 2.10, since those bluesedgest belong to the blue curve(s), and that
(those) blue curve(s) must pass by the vefteand by all the other five vertices surrounding
it, and by those four edges: three blue, (& and &) and one green 6 (note that a green
edge is the result from overlapping blue and yelbmes):

Topology z\

=

Topology 1

This Kind of Vertex is Not
Allowed, Since All Vertices
Herein Are 3-Edged, Except
the Vertex 4

The Two Possible Topologies of the Blue Curve From the Map C
(Obs.: The Yellow Curve Is Not Shown Here)

Figure 2.10 Two possible fit topologies of the blue curvatthass by the verték from the mapC

Note that there do exist more two other possibplogies, 1’ and 2’, but they are
essentially the same as those 1 and 2 represemtdte iFig. 2.10, respectively, since all
following conclusions are completely applicablghem too, when we replace the topology 1
by the 1’, or the topology 2 by the 2’ (obs.: veliify exhaustion that there is no other ones):

Topology 2'

Topology 1'

=z

This Type of Curve,
that Do Not Pass at A,
Do Not Matter in
Order to Determine
hat Topology

The Other Two Possible Topologies of the Blue Curve From the Map C
(Obs.: The Yellow Curve Is Not Shown Here)

There Are 6x5/2 = 15 Possible Links:
Px Linked to Py = Px—Py = Py—Px

Ps

(Obs.: The Yellow Curve Is Not Shown Here)

P1—Ps, Ps—Ps, P2—P3 = Topology 1

2 P1—Ps, Ps—P2, P3—Ps = Topology 2

P1—P2, P3—Ps, Ps—P1 = Topology 2

Non-Allowed Links:
P1—P3 Blocks P2
P2—Ps Blocks P3
P3—Ps Blocks P+
P4+—P¢ Blocks Pz
Ps—P1 Blocks Ps
Ps—P2 Blocks P1

P1—P4, Ps—Ps, P2—P3 = Topology 1'

P1—P2, P3—Ps, Ps—Ps = Topology 2'

B

This Type of Curve,
that Do Not Pass at A,
Do Not Matter in
Order to Determine
that Topology

This Kind of Vertex is Not
Allowed, Since All Vertices
Herein Are 3-Edged, Except
the Vertex 4

Figure 2.12 Demonstration that there are herein only these fiossible topologies: 1, 1’, 2 and 2’
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Note Furthermore, other blue curves that do not pgsanly of these six vertices can
exist, but these curves, even though they reabyetldo exist, do not matter at all w.r.t. the
topologies above and the proof in this paper, siheearguments herein utilized shall be
demonstrated true ones independently of the existennonexistence of such curves.

Verify yet that there is no other possible fit tajpes for any blue curve (or curves)
that pass by all those six vertices and four edijas:enough to think of a torn blue curve
with loose ends at those six vertices and four edgel exhaustively try to link those loose
ends (R, P, P, P4, Ps and R in the Fig. 2.12) of the curve in order to fix thetire curve into
a repaired closed one, with neither intersectionanossing of it with itself (nor with another
curve of the same color), except at verexas shown in the Fig. 2.12.

Notice that there do exist two possible topologethe magC, but if it had topology 2
(or 2’), however, then would exist a blue-greenichacluding & and & (by Lemma 2.7,
since these edges are contained in a simple @glshown in the Fig. 2.10 — and in the Fig.
2.11, w.r.t. topology 2’), which would permit a Edanversion of these colors in this chain (as
in Def. 2.11), generating a 3-edge-colored map witbe blue edges contiguously incident to
the vertexA, allowing for the creation of more one region if@oand it continuing being
properly 3-edge-colored (as in the Figure 2.8),chtalso would imply that that may could
not be a true minimal counter-example to the 4G@Tstown in the figure below:

Blue-Green Chain Containing
Topology 2\ E1 and E2 into Topology 2 Topology 2\
fron N0

o

Now, This Edge Coloring
Does Allow to Create a 3-Edge-Coloring
Map with more 1 Region

!

Figure 2.13 Locally inverting colors in a blue-green chaimen resulting ZBCI map

Hence, as by hypothesis that midyghould be a minimal counter-example to the 4CT,
that topology is (must be) the 1 (or the 17).

So, as the three blue edges, (&2 and &) are not contiguously incident to the vertex
A, and they are positioned according to topologprl1(), we can locally invert the colors
blue and yellow in a blue-yellow chain containing fBllowing exactly one from the three
ways below:

1. The blue-yellow chain contains the edgesaid E, as shown in the Fig. 2.14,
where that local inversion of colors generateSBCI map which implies that
same conclusion (that may cannot be a real minimal counter-example to the
4CT), and then producing that same contradictiotih wur hypothesis (that that
map N is a true minimal counter-example to the 4CT),shewn in the figure
below:
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Blue-Yellow Chain Containing E1 and Es Q /V
=z

:> Es

Part of Map C The Same Part After Locally Inverting the Colors Inside
A 4-CM (Four Colorable) the Blue-Yellow Chain Containing E1 and Es
This Edge Coloring Does NOT Allow to Create a 3-Edge-Coloring Map with more 1 Region ... ... But this one Does it

Figure 2.14 Locally inverting colors in a blue-green chaimen resulting aBCIl map

2. The blue-yellow chain cannot contain the edgesuifl &, for if so, then it would
block the blue-yellow chain containing the edgesuid E, by planarity, as shown
in the Fig. 2.15, where that local inversion ofagslin this chain which also would
generate dBCI mapcannot really occur:

Blue-Yellow ning E1 and E4

e X X 1)

Part of Map C
A 4-CM (Four Colorable)

The Same Part After Locally Inverting the Colors Inside
the Blue-Yellow Chain Containing E1 and Es

This Edge Coloring Does NOT Allow to Create a 3-Edge-Coloring Map with more 1 Region

Figure 2.15 These blue-yellow chain containing the edgﬁarEi & and local inversion cannot occur

.. But this one Does it

3. The blue-yellow chain contains the edgesaid E, as shown in the Fig. 2.16.
Now, however, that local inversion of colors gemesaa map that is not EBCI
map whereby that conclusion (our hypothesis is false)o more valid here (that
mapN now seems right, for it can still be a minimal ntar-example to the 4CT).

Definition 2.13. Local inversionLi. That local inversion of colors that does not
generate a ma locally colored at verteR in a way like the one in the Fig. 2.8 (a
TBCI may), and that passes by two noncontiguous edgesencid A, is defined
asLocal InversiorLi, as shown in the figure below:

S Blue-Yellow Chain Containing F1 and E3
[ ] Local Inversion L1: @
A
Part of Map C The Same Part After Locally Inverting the Colors Inside
A 4-CM (Four Colorable) the Blue-Yellow Chain Containing E1 and E3
This Edge Coloring Does NOT Allow to Create a 3-Edge-Colored Map with more 1 Region ... .. And this one Does NOT Too (Yet)

Figure 2.16 Locally inverting colors in a yellow-green chaesulting a map that is nofl@Cl maptoo
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Proposition 2.2.A Local InversionL: (any arbitrary local inversion, really) leaves the
property of being2-DSCC_M intact about the mag above, that is, after it that map
continues being 2-DSCC_M

Proof. After that local inversion of colots: (or any other arbitrary local inversion), all
the 3-edged vertices of that m&pcontinues properly colored, because there was anly
exchanging of the colors in two incident edges ache3-edged vertex. And the 5-edged
vertex A can be expanded into three properly colored 3dgetices A, A2, andAz), as
shown in the Fig. 2.17, generating after alB-BCC as shown in the Figs. 2.18 and 2.19;
thereby the resultant map i2eéDSCC_Mtoo, by Corollary 2.2. Then, contracting thoseséhr
vertices A1, A2, andAs) and returning them into the vert@x two things can occur, as shown
in the Figs. 2.18 and 2.19, respectively: Eitheth) simple closed yellow curve that passes
by those three vertices intersects itself at alsipgint (the verteXd) and changes itself into a
non-simple closed yellow curve; or 2) the two siemplosed yellow curves that pass by those
three vertices that join themselves into only ona-simple closed yellow curve. Where the
simple closed blue curve that passes by those tlemtiees continues unaltered passing by the
vertex A, thereby leaving the map continuing to be 2-DSCC_M as shown in the Figs.
2.17,2.18 and 2.191]

Obs.: The left part of map below is the same asabmight in the Fig. 2.16, just drawn
144° (0.8r rad) counter-clockwise rotated:

Obs.: The External Parts of the Maps (not Shown Here) Are Equal

E1

Es

A
i

et

Es
E4

This Kind of Vertex is Not
Allowed, Since All Vertices

Herein Are 3-Edged, Except
Part of the Resulting 3-ECG After Expanding the Vertex A 10 vertex 4 Part of Map C

A 2-DSCC Too A 4-CM (Four Colorable)

Figure 2.17 Expanding the verteX and generating 2DSCC

Obs.: The External Parts of the Maps (not Shown Here) Are Equal

E1

Es

o m— o

A
A2 A3 E4
® ° Es
E4
Es
(Obs.: The Blue Curve Is Not Shown Here)
Part of the Resulting 3-ECG- After Expanding the Vertex A Part of Map C (With the Vertex A Contracted Again)
A 2-DSCC A 2-DSCC Too

Figure 2.18 Contracting the verteX again and showing that the map continues bep&CC
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Obs.: The External Parts of the Maps (not Shown Here) Are Equal

E1

Es

o. —p .

A
Aa A3 E4
® [ ] Es
E4
Es (Obs.: The Blue Curve Is Not Shown Here)
Part of the Resulting 3-ECG After Expanding the Vertex A Part of Map C (With the Vertex A Contracted Again)
A2-DSCC A 2-DSCC Too

Figure 2.19 Contracting the verteX again and showing that the map continues be2xp&CC

Consequently, the two only possible fit topologmsthe yellow curve from the
resultant mapC above, the only acceptable ones (where the edgdssBnd E are yellow,

and E is green), are (must be) those ones shown indhbesfbelow:

Topology 1 i * ¢ T
opology == P Topology 2
[ ]
E1 E1
L ]
] ] [ ] [ ]
Es 4 Es
=z
E2 L4 E2
f ® ® \
] =
A A T
= e
® ]
e E3 E3
L
2 L ] » L ]
L The Two Possible Topologies of the Yellow Curve From the Map C
L J
== (Obs.: The Blue Curve Is Not Shown Here)

Figure 2.20 Two possible fit topologies of the yellow curvkthe mapC that pass by verteX, afterL:

Note yet that, as before w.r.t. that blue curvethe Fig. 2.10, here also there are two
other possible fit topologies, 1’ and 2’; but theyp are essentially the same as those ones 1
and 2, respectively, represented in the Fig. Z@&0the same reasons explained after the Fig.

2.10, as shown in the figure below:

]
Topology 1' L J L L] Topology 2'
=z
L
L} s
E1 E1
L J
] ] [ ] [ ]
Es Es
Ez2 L4 E2 °
f o . = o
A A ==
= [ ]
]
]
o E3 E3
*
L L]
. L ] L]
. == L ] The Other Two Possible Topologies of the Yellow Curve From the Map C
L ]
== (Obs.: The Blue Curve Is Not Shown Here)

Figure 2.21 Other two possible fit topologies of the yellowrve of the mag that pass by verteX, afterL
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If it was topology 2 (or 2’), however, then, agle Fig. 2.13, it will be a flaw too:

E1

Topology 2

Now, This Edge Coloring
Does Allow to Create a 3-Edge-Coloring
Map with more 1 Region

Green-Yellow Chain Containing E2 and E3

Figure 2.22 Locally inverting colors in a yellow-green chaihen resulting &BCIl map

Hence, adN is a minimal counter-example to the 4CT, by hypet$, in order to avoid
that flaw above (resulting BBCI mapatfter that local inversion of colors in that gregslow
chain), that topology is (must be) also the 1 o 1’). Now, w.r.t. the resultant map
colored as in the way 3 above (as that map platedls in the Fig. 2.16), we can locally
invert the colors from the blue-yellow chain contag & and E.

Definition 2.14. Local inversionL». The local inversion above, that generates a map
C locally colored at verteR in a way like the one in the Fig. 2.9 (which_ig adBCIl may),
and passes by two contiguous edges incideAt te defined asocal InversionLz, as shown
in the figure below:

® Obs.: The Other External Parts of the Maps Are Not Shown Here L]

E1

Local Inversion L2:

1 A

== Es

Blue-Yellow Chain Containing E4 and Es\.

Part of the Map C
(Obs.: Placed at Right in the Fig. 2.16 Above)

The Same Part After Locally Inverting the Colors Inside
the Blue-Yellow Chain Containing E4 and Es

Figure 2.23 Locally inverting the colors in a blue-yellowaih, then resulting a map that is nagEBCIl map

Note that if the blue-yellow chain containing &lso contained £(or Es), then we
could locally invert these colors in this chaig-E; (or 5-Es), generating @BCI map which
also would imply that that may could not be a minimal counter-example to the 4THus,
in order to maintain our hypothesis, this blue-g@lichain (that containssEmust not contain
either & or E&: From B, Es and g, it can contain only E That is, that yellow-blue chain
beginning in B must end up in Ein the Fig. 2.23, since if it did it ini:or B, then aTBCI
map would be generated when the colors from that yelitue chain (beginning insEand
ending up in either £or E) were locally inverted (which also would imply ththat mapN
could not be a true minimal counter-example to4Gd).

So, as in the Fig. 2.10, the two possible fit togas of that yellow curve from that
resultant majC colored as at right in the Fig. 2.23 (where thgesdk, Ez and & are yellow,
E> is green, and Hs blue) are shown in the figure below:
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. L]
[ ]
° . Topology 1 Topology 2 .
s 1 ] Y R
e
. “ p
E1 Sz *
L
. . This Kind of Vertex is Not =
Allowed, Since All Vertices
E Herein Are 3-Edged, Except L *
e the Vertex 4
L
: o
® E4 =z A
Es
e ® Es
E3
®
- L]
¢ ]
-
The Two Possible Topologies of the Yellow Curve From the Map C ]
(Obs.: The Blue Curve Is Not Shown Here) s .
L)

Figure 2.24 Two possible topologies of a yellow curve of thapC that pass by vertek, afterinversionL2

Again, as in the Fig. 2.11, if it was topologyd @’), then would exist a yellow-green
chain including kE and E, which would allow a local inversion of these aslin this chain,
generating &BCI map which also would imply that that mé@p could not be a real minimal
counter-example to the 4CT, as shown in the figpelew:

Yellow-Green Chain Containing * .
Topology 2 E1 and Ez into Topology 2 Topology 2
=
\ =
E \

E4 Now, This Edge Coloring s
E3 Does Allow to Create a 3-Edge-Coloring s
Map with more 1 Region

e =

Figure 2.25 Locally inverting colors in a yellow-green chaihen resulting &BCIl map

Hence, as that maj is a minimal counter-example to the 4CT, by hypsib, that
topology is (must be) the 1 (or 1'). Note that #néwo local inversionsLi andL2) must be
disjoint (they cannot have any edge in common, leea blue-yellow chain cannot cross
another one in a 3-edged vertex, since there ig omé pair of blue-yellow edges in each
vertex of this type), which implies that that bipelfow chain containing the edges &d E,
shown in the Fig. 2.23, cannot contain any edgéhat blue-yellow chain containing the
edges E£and E, shown in the Fig. 2.16.

Moreover, as shown in the Figs. 2.29 (I and MWhére Y [By, ] denote the part of
a yellow [blue] curve linking directly the verticag and \f without passing byA), even
though the blue-yellow chain containing the edgesitfl E crosses the green-yellow chain
containing the edges:End E in the map, a local inversidm, cannot cut the part of that
yellow curve linking directly the edges Bnd E in that original map, in order to generate the
topology 1 (or 1') again into another positionhistmap. This part of that yellow curve is just
changed in order to pass by other vertices, bobntinues linking directly the edges &nd
E>, as demonstrated in the Figs. 2.26 to 2.29 (Nbhere that case represents the general one.
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However, in order to uphold our hypothesis (thaiprN is really a minimal counter-
example to the 4CT), the local inversidnsmust cut the parts of that yellow curve linking
directly the edges iFand E (and & and E) in that original map, in order to change the
connections of the yellow cunfeom E; to B to E> to B, andfrom Es to Es to E; to B, so as
to generate the topology 1 (or 1') again into a@ofosition in the map, as it is required in our
necessary sequence of topologies of the yellowecafter those local inversiohs andL,
with the aim of upholding the truth of our hypotisegs shown in the Figs. 2.26 to 2.29 (ll1)

. .
L ] ® ®
Topology 1 w1 b [ ] Vi Topology 1
=
L ] d .
E1 *"m E1 f
o Fieg e
» Vig Local Inversion L2 o % P V:g
Es
Ez Ez2
L
e .
A
=z
= =
o
E3z e
"‘v"it_shg P
L] . -
L]
[
L
= The Local Inversion L2 Cannot Change the Link of the Yellow Curve from E1-E2 to E2-E3 (Neither from E3-Es to E+-E1)
(Obs.: The Blue Curve Is Not Shown Here)

Figure 2.26 The inversiorn_z under a topology 1 (or 1') cannot generate thimes&ind of topology (1 or 1)
where \; and \% are not directly linked by the yellow curve, asytlare so in the left side above

\__T Obs.: This Figure is the Same °

as the Previous One, but L Topolosy 1
) s pology
Topology 1 A\' Showing Part of the Blue ¢

Curve in a Possible Position ~ = ﬁd’

Local Inversion L2 P "~.3v P ®
Ez2
[ ]
= =
=,
s&;@u
“v"iz_i»,g. P
-
e

The Local Inversion Lz Cannot Change the Link of the Yellow Curve from E1-E2 to E2-E3
(Neither from E3-Es to E4-E1)

Figure 2.27 The inversiorLz under a map with topology 1 cannot generate awigptopology 1 (or 1')

\___T Obs.: This Figure is the Same °

as the Previous One, but ® Topology 1
. pology
Topology 1 A\' Showing Part of the Blue of

Curve in another Possible = ”g‘ﬂ“f

Position & g
E1 L) E1 :
g pr
"

Local Inversion L2 .

E2

.
A

L3 : ==

2,

Q&.
-

S, @

L ]

The Local Inversion L2 Cannot Change the Link of the Yellow Curve from E1-E2 to E2-E3
(Neither from E3-Es to E4-E1)

Figure 2.28 The inversiorLz under a map with topology 1 cannot generate awigptopology 1 (or 1')
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Yus

— v—?—-\i
Topology 1 Vi Yoz Local Topology 2' Vi Yoz
rv Inversion L2 rv
A\'e] Vs

Vs Es 15.5)

Yiss)
In A

o4 =z} W Es

Es
The Dashed Lines
Represent the Position
Vs of the Yellow Curve Vs

Yo
=
Yoz e = {zw)

Figure 2.29 (I) The inversioriLz under the previous map cannot generate a mapeptiogy 1 (or 1)

Yo v z
Topology 1 V1 Yaz Local Topology 2 Vi Yoz
rv Inversion L3 rv
A\'e]

Es
The Dashed Lines
Represent the Position
Vi of the Yellow Curve Vs

Yus E1 Yos

Vs Es Vs Es V2

Yus Yus
s es= {z,w}| e = {x,v} Es Es ei= )
The Dashed Lines The Dashed Lines v
Represent the Position Represent the Position

Vi of the Yellow Curve Vi Vs of the Yellow Curve Vs
el el /—
X Yoa X B, ,
¥ o Yos
Yoa e2=fxy}

Figure 2.29 (Il) The inversiorLz under the previous map cannot generate a mapegtiogy 1 (or 1)

Ev E1 Eq E
Vi Wi A Local Inversion L2 4 v

Cannot Cut the Part of
that Yellow Curve
Linking Directly the
Edges Ep and E2:

Local Inversion Lz

The Yellow Curve

Passing Directly by
Vjand V1is Changed
in Order to Pass by
Viand Vk Too, But

Vi or Vs Vz Ity\Cnnri::ues to Link Vior Vs V2
Ei%orEs Ez2 Viand V1, as Before /g5, p:  Ez

Figure 2.29 (lll) The inversionz under the previous map cannot generate a mapeytiogy 1 (or 1)

As demonstrated above, even when that blue-yellminccontaining the edgeg Bnd
Es (or &) crosses the green-yellow chain containing theesdg and E in the map, the part
of the yellow curve passing directly by arbitramgrtices \ and \ can be changed only in
order to pass by\and \k too (where Vwas linked to Yand \ was linked to Vby a blue
curve), but those vertices; ¥nd \ continue linked by that yellow curve. As ¥nd \ are
arbitrary vertices and form a direct link from © E, and that local inversiohz can only
invert the colors from the blue-yellow chain lingil to & (or ), then this local inversion
cannot cut the part of that yellow curve linkingeditly the edgesFand E.

Therefore, our hypothesis (that mBpis a minimal counter-example) is (must be)
false, and a minimal counter-examedo not exist, since all the allowed colorings Ie t
Table 2.4 lead to the fact that that mys (must be) 8-ECC(so, also &-CM).
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So, in synthesis, if the local inversian under thatCBG C (originated from that
arbitrary mapN) generates a map with topology 2 (or 2’), thencae invert the colors in
some yellow-green chain (by the Lemma 2.7, sincénig case, e.g. the edgesdnd E are
kept in a simple cycle forming a yellow-green chagenerating &BCIl map which would

imply that that mapN could not be a real minimal counter-example to484d, denying our
hypothesis, as shown in the figure below:

Blue-Yellow Chain Containing E1 and Es b

/ - Topology 2
E
3

TS

[ ] [ ]
Es
£
A . E
ry ¢ )
\4 . ES
A £
‘_ .
[ ]
5 Local Inversion L1
Es
) : ¢
L
.
Part of the Map C One of the Two Possible Topologies of Yellow Curve After Inversion L1
A 4-CM (Four Colorable)

But Inverting the Colors in the Yellow-Green Chain Containing E2 and
E3, We Generate a Map Like that One in Fig. 2.8 (a TBCI map)

Figure 2.30 If local inversiorL leads to topology 2 (or 2'), thé¥h cannot be a minimal counter-example

This Edge Coloring Does NOT Allow to Create a 3-Edge-Colored Map with more 1 Region ...

Hence, as the local inversi@n under that mag cannot generate a map with yellow
curve with topology 2 (or 2’), in order to maintaine truth of our hypothesis, it can only
generate a map with yellow curve with topology 4X9, as shown in the figure below:

E . o .
Blue-Yellow Chain Containing E1 and E3 Topology 1 \
=
,/ \
E1 E1
Local Inversion L1

E2

e

L] Es
L}
L ]
Another One of the Two Possible Topologies
of Yellow Curve After Inversion L1

Part of the Map C .
A 4-CM (Four Colorable)

= L J

]

And This One Also Do Not... (Yet)

Figure 2.31 If inversionL: leads to topology 1, then the midzan be a minimal counter-example (yet)

This Edge Coloring Does NOT Allow to Create a 3-Edge-Colored Map with more 1 Region ...

Now, after the inversio: under that magC, we must have certainly a map with
yellow curve with topology 1 (or 1’). Then, afterl@cal inversionL> under that ma© we
have certainly a map with yellow curve with topgtd@(or 2’), since — as we have seen above
— the inversiorn, under that mag cannot from a map with yellow curve with topolatyor
1") create a map with yellow curve with this sampdiogy 1 (or 1’), into another position:

- . . ° 4 .
=
Tovaloas 1 =X Topology 2 =
opology ° "
E E1
» ) Local Inversion L2 * Y
Es
E2 Ez2
f ® f ]
A A
(2 ==
Es
[ Es . Es
L ]
L] - .
Supposing this Edge
is Green, as in the Fig. @ (Obs.: The Blue Curve Is Not Shown Here) »
226 . R
One of Two Possible Topologies of Yellow Curve When We Apply
the Inversion L2 on a Map With Yellow Curve Upon Topology 1 (or 1')

Figure 2.32 The inversiorL2 under a map with topology 1 can only generate p with topology 2 (or 2%)
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Then, from that generated map with topology 2, lasady shown above, we can
generate &BCIl map doing a local inversioh», where that ma is proved cannot be an
actual minimal counter-example to the 4CT, as dlyeslnown previously.

Topology 1

E1

=) .

Supposing this Edge
is Green, as in the Fig. 2.28

Ez2

(Obs.: The Blue Curve Is Not Shown Here)

2
Another One of Two Possible Topologies of Yellow Curve When We Apply

the Inversion L2 on a Map With Yellow Curve Upon Topology 1 (or 1)

Topology 2'

E4

E1

E3

=

Figure 2.33 The inversiorLz under a map with topology 1 can only generate p with topology 2’ (or 2)

Finally, from that generated map with topology @5 already shown above w.r.t.
topology 2, we can also generatd BCl map executing also a local inversidn, where is
again proved that that m&pcannot be a true minimal counter-example to th€.4C

Proof brief: A [supposed] arbitrary minimal countetampleCBG N => Contracting
pentagon => Al-CM mapC that is_not &/ BCI map=> Topology 1 (or 1') => Local inverting
L1 => Topology 1 (or 1') => Local inverting.l=> Topology 2 (or 2’) => A-CM mapC that
is aTBCI map=> N is not a minimal counter-example => 4CT (by a slamd simple proof
that can be utterly checkable by human mathemasg¢iaithout computer assistance).

Hence, a true minimal counter-example to the 4C®&sdoot exist, hence every
connected finite simple planar graph iS#&CC, so it is also a-CM, and hencelCT is
proved.[]

3. Conclusion & Understanding

The conclusion is that now we utterly understéfidvhy the 4CT is really true: Every
finite simple planar graph can be properly fourecable because all they can be represented
by only two sets of closed curves, where all thggares of that map is either inside or outside
with respect to each one of these two sets of syied when we cross any edge (entering at
some adjacent region) at least one of these relatigitions must change.

So, a properly four-coloring emerges naturallyguery finite map, associating every
region of the map to each one of 4 arbitrary colmunivocally associated to the 4 possible
relative positioning of that region with respectw set of closed curves that form that map:

Color of the | Location w.r.t.| Location w.r.t.
Region DSCC1 DSCC2
1 Outside Outside
Outside Inside
3 Inside Outside
4 Inside Inside

Table 3.1 Understanding utterly why the 4CT is really true
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4. Comments about Interesting Reviews

4.1 A reviewer has said:

“On page 18, in the last paragraph, the author states "... the local inversion L2 cannot cut the
part of that yellow curve linking directly the edges Ei and E: in that original map, in order to generate
the topology 1 (or 1') again into another position in this map..." But apparently exactly this might
happen! Let me illustrate such a situation: — We assume that map C has edges Ei, Es, and Es in
yellow, edge E: in yellow and blue (hence green), and edge Es in blue, as illustrated in the right of
Figure 2.16.

— Moreover, we assume that map C has Topology 1 as illustrated in the left of Figure 2.20.
— For future reference, for i=1,...,5, let vi denote the endpoint of edge Ei that is different from A.

— Let Y2 denote the yellow path between vi and vz (see left of Fig. 2.20). Similarly, let Y4
denote the yellow path between vs and va (also in the left of Fig. 2.20). Yet similarly, let Y5, denote
the yellow path between v4 and vs (again in the left of Fig. 2.20).

— Now consider the path P used in the local inversion Lz. That is, P has endpoints va and vs,
does not contain vertex A, and alternates in colors yellow and blue. The author claims that swapping
colors yellow and blue on this path cannot result in a Topology 1 situation, which is depicted in the left
of Figure 2.24.

— However, exactly this would happen if path P is routed as follows: Starting from va, take one
(yellow) edge e1 = {va,x} of Y34}, take one blue edge ez = {x,y} whose other endpoint y is on Y2, take
one (yellow) edge es = {y,z} of Y2 in direction towards vi, and take one last blue edge es = {z,vs}
whose other endpoint is vs.

— Swapping yellow and blue colors along P and also on E4 and Es (i.e., performing local
inversion L2), results in a yellow curve from vertex A along Ei, then along Yii,2; up to vertex z, then
along es4 (which is now yellow) to vertex vs, then along Y5y up to vertex vsa, and finally along E4 (which
is now yellow) back to vertex A. (Consequently, there is a yellow curve A->Ez2->Y(1,2->€2->Y3,4->E3.)

Hence, after local inversion L2 we are facing Topology 1 again.”

In the implicit topologies of the curves that tlewiewer has utilized above, the blue
edgeEbi from the vertexw in Fig. 2.34 (where it is represented which hefsa® said) would
be blocked by those edges e, es andes, impeding that it could reach to the blue eége
from V2, hence impeding that the closed blue curve thas by the edgel2 andE4 could
really be closed one.

Then, the referred local inversion used in thatewvcannot occur in a real map,
where the supposed contradiction with the prooéinedoes not exist (by the way, see that in
the local inversions that can really occur, thasell blue curve that pass by the edfeand
E4 can (must) really be closed one, as seen in falgwig. 2.35). See yet, in Figs. 2.36 and
2.37, that even in a general way that construdtiom that review doesn’t work:

This Topology Cannot Occur, For En Must Be Connected

' . 3 < :
R to Ebz, Which is Blocked by the Edges from e1 to e+
v .

Topology 1 Vi

E1

The Dashed Lines
Represent the Position
Vi ofthe Yellow Curve W

el
X You
v

Figure 2.34 Representation of the inconsistent Topology ddusy the reviewer that has caused the error in
that local inversion, as explained above
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The Dashed Lines

Represent the Position
Vi ofthe Blue Curve %
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Topology 1

Topology 1 °
opology Yoo V

Yus ]

Vs Es e

ed = {z,w}]

Es
The Dashed Lines
Represent the Position
Vi of the Blue Curve

E4
Es
The Dashed Lines
Represent the Position

Vi of the Yellow Curve Vs
el
X Ypg
w
o2 = fx3}

Figure 2.35 Representation of the consistent Topology 1 bseithe author [in the Fig. 2.29 (II)] in orderdo
a right local inversion

b3

Yoa

o= fxy)

5 @This Topology Cannot Occur, For En1 Must Be Connected
¥ to Ew2, Which is Blocked by the Edges from e1 to e7
’v -
Topology 1 Vi

E1

E3
The Dashed Lines

Represent the Position
V4 of the Yellow Curve

E4
Es
The Dashed Lines
Represent the Position
of the Blue Curve

Vi

Yo

ﬂ%

@This Topology Cannot Occur, For Ex1 Must Be Connected
to Eb2, Which is Blocked by the Edges from €1 to en
% .
Topology 1 V1

E1

Es
The Dashed Lines
Represent the Position

of the Blue Curve

2= fuy)
Es
N The Dashed Lines
Represent the Position E4

Vi ofthe Yellow Curve

el
bﬂ eg Yo
e’ EID I e

Enl

Figure 2.37 Representation of a general inconsistent Topolbgyausing error in that local inversion too,
definitely demonstrating that from a topology 1 {9, after a local inversion4,.we cannot obtain
again a topology 1 (or 1') into another positiortie map

Vi

4.2 Another reviewer has said:

“The author claims to have given a human comprehensible proof of the four colour theorem.
Since the theorem itself is correct, as has been shown by the Appel & Haken computer generated

proof and its subsequent simplifications, it cannot be excluded that such a proof might exist.” Then,

after to agree in general with all the other pr@ofjluments, that reviewer nevertheless
concludes:However, | see no convincing argument that the blue-yellow chain through E4 and Es in

Fig. 2.23 must return to Es; it may reenter in node A passing by Ez or E1.”
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See the cited Fig. 2.23 copied and pasted belsWwig 2.38:

L] Obs.: The Other External Parts of the Maps Are Not Shown Here L]

Local Inversion Lz:

\ .
=z Es

Blue-Yellow Chain Containing E4 and E;‘\.

Part of the Map C The Same Part After Locally Inverting the Colors Inside
(Obs.: Placed at Right in the Fig. 2.16 Above) the Blue-Yellow Chain Containing E+ and Es

Figure 2.38 Locally inverting the colors in a blue-yellowaih, then resulting a map that is nagEBCIl map

So, we shall see that reviewer is not completiglgtr As demonstrated in Fig. 2.15,
the blue-yellow chain throughsEEannot reenter in nod&é passing by E for if so, then it
would block the blue-yellow chain containing &d E, by planarity, as demonstrated in Fig.
2.15; and if it reenters iA passing by E then there would be a local inversion of colgrsmu
this blue-yellow chain that would generatd BCl map as in Fig. 2.14, which also would
demonstrate that that mapcould not be a true minimal counter-example to4G8&:

® Obs.: The Other External Parts of the Maps Are Not Shown Here L

E1

Local Inversion: P

— 2
E2

Blue-Yellow Chain Containing E4 and Ea \
[ o e ./ |

Part of the Map C The Same Part After Locally Inverting the Colors Inside
(Obs.: Placed at Right in the Fig. 2.16 Above) the Blue-Yellow Chain Containing E4 and Es

Figure 2.39 Locally inverting the colors in a blue-yellowaih, then resulting a map that iJBCI map

5. Freedom & Mathematics

“_ The essence of Mathematics is FreeddhfGeorg Cantorit!!
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